
NAVAL POSTGRADUATE SCHOOL
n Monterey, California

N

THESIS 3

DESIGN AND INVESTIGATION OF A DIVE PLANE
SLIDING MODE

COMPENSATOR FOR AN AUTONOMOUS UNDER-
WATER VEHICLE.

by

Sur, Joo-NO

September 1989

Thesis Advisor Fotis A. Papoulias
Co-Advisor Anthony J. Healey

Approved for public release; distribution is unlimited.

90 0 0-



Unclassified
security classification of this page

REPORT DOCUMENTATION PAGE
I a Report Security Classification Unclassified lb Restrictive Markings
2a Security Classification Authority 3 Distribution/Availability of Report

2b Declassification Downgrading Schedule Approved for public release; distribution is unlimited.
4 Performing Organization Report-Number(s) 5 Monitoring Organization Report Number(s)
6a Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organization
Naval Postgaduate School (If applicable) 69 Naval Postgraduate School
6c Address (city, state, and ZIP code) 7b Address (city, state, and ZIP code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000
8a Name of Funding Sponsoring Organization 8b Office Symbol 9 Procurement Instrument Identification Number

(If applicable)
8c Address (city. state, and ZIP code, 10 Source of Funding Numbers.

I Program Element No Project No I Task No I Work Unrit Accession No

II Title (Include security classification) DESIGN AND INVESTIGATION OF A DIVE PLANE SLIDING MODE
COMPENSATOR FOR AN-AUTONOMOUS UNDERWATER VEHICLE.
12 Personal Author(s) Sur. Joo-No
13a Type of Report 13b Time Covered 14-Date of Report (year, month, day) 15 Page Count
Master's Thesis From To September 1989 1130
I6 Supolementary Notation The views expressed in this thesis are those-of the author and do not reflect the official policy or po-
sition of the Department of Defense or the U.S. Government.
17 Cosati Codes 18 Subject Terms (continue on rg-ers ffnecessary and Identify by block number)
Field Group [Subgroup- Word processing, Script, -W, text processing) i e'S,

I bstract (continue on reverse if necessary andTdrifify-by.block number)
A sliding mode compensator for depth control f an-autonomous underwater vehicle (AUV) using depth feedback only

is designed. The controller is evaluated for a nominal linear ni bdeland optimized by a series of numerical experiments for a
number of depth changing maneuvers. A state observer is used in order.to estimate the unmeasurable states together with the
sliding-mode controller. The effects of varying control parameters are dicussed. Compensator performance is assessed by
numerical simulation of AUV dynamic response based on the full six degrees'bf freedom nonlinear equations of motion. The
expected robustness of the design is demonstrated by comparison between linear and nonlinear vehicle response character-
istics, and by a wide variation in vehicle parameters and hydrodynamic coeficienis. Finally, suggestions for design improve-
ment and directions for future research are indicated.

20 Distribution Availability of Abstract 21 Abstract Security Classification
i] unclassified unlimited 0 same as report 0 DTIC users Unclassified
22a Naf'' "',,,eponsible Individual 22b-Telephone (include Area codcj 22c Office Symbol
Fotis A. Pap,,dias (408) 646-3381 69Pa

DD FORM 1473:S. MAR 83 APR edition may be used u.til exhausted ;ecurity classification of this page
All other editions are obsolete

Unclassilied



Approved for public release; distribution is unlimited.

Design and Investigation of a Dive Plane Sliding Mode
Compensator for an Autonomous Undenvater Vehicle.

by

Sur, Joo-No
Lt, Korean Navy

B.S., Naval Academy, 1981
B.S., Seoul National University,1985

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 1989

Author:

Sur, Joo-No

Approved by: y . >. ' -

Otis A. Papoulias, Thesis Advisor

/ AnthonJIHey, Co-vi r

Anthony J. Healey, Chair an
Department of Mechanical E igineering



ABSTRACT

A sliding mode compensator for depth control of an autonomous underwater

vehicle (AUV) using depth feedback only is designed. The controller is evaluated

for a nominal linear model and optimized by a series of numerical experiments

for a number of depth changing maneuvers. A state observer is used in order to

estimate the unmeasurable states together with the sliding mode controller. The

effects of varying control parameters are discussed. Compensator performance

is assessed by numerical simulation of AUV dynamic response based on the full

six degrees of freedom nonlinear equations of motion. The expected robustness

of the design is demonstrated by comparison between linear and nonlinear vehicle

response characteristics, and by a wide variation in vehicle parameters and

hydrodynamic coefficients. Finally, suggestions for design improvement and di-

rections for future research are indicated.
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I. INTRODUCTION

A. GENERAL

There has been an increased interest recently in the need for autonomous

underwater vehicles (AUV) in both Navy and private industry. A variety of un-

classified missions .ncludes ASW, decoy, survey, reconnaissance, and ocean engi-

neering work service. As the cost of manned submarine vehicles increases, there

are significant advantages to the use of cheaper unmanned vehicles. The AUV

should be able to maneuver freely in the ocean enviroment with respect to depth,

heading, and speed in order to carry out its missions. Such maneuvering require-

ments have to be easily accomplished by a low level active control system, and in

the presence-of environmental and physical uncertainty.

All information concerning the environment of a vehicle is detected by the sens-

ing level of control-on-board the vehicle and directed to the high level intelligent

system in order to carry out an unmanned mission. The-dynamics of underwater

vehicles are described by highly nonlinear systems with uncertain coefficients and

disturbances that are difficult to measure. Robust control using variable structure

systems are reputed to provide accurate control of nonlinear systems despite un-

modeled system dynamics and disturbances, leading to the motion that sliding

mode compensators should be employed in situations where accurate tracking is

desired and where maneuvering parameters of AUV change with operating con-

ditions.

B. AIM OF THIS STUDY

This thesis aims at investigation of the use of sliding mode compensator for

AUV depth keeping and changing. The control concept developed here is that

of a variable structure system consisting of continuous subsystems together with

suitable switching logic. The sliding mode control concept was suggested by V.

Utkin [Ref. 1]-and recently developed by J.J.E. Slotine [Ref. 2]. Because sliding

mode control requires full state feedback, this work has incorporated a state ob-

served based on output measurement resulting in a sliding mode compensator.



The main goal of this thesis is to present a design procedure and estimate

robustness of the variable structure compensator in the presence of vehicle non-

linearities, modeling errois, uncertainties, and variation of parameters.

C. THESIS OUTLINE

Chapter 2 introduces the basic concept of Liapunov stability and an

asymptotically stable condition which is related to energy degeneration with in-

creasing time for a dynamics system. The-other sections will discuss how to de-

sign a sliding surface and a control law based on a linear model. The last section

of the chapter presents a technique to eliminate chattering in order to provide

smooth control inputs.

In Chapter 3, vehicle dynamics and a process used to produce a linear state

space representation are described. Sliding control law for a linear model is de-

signed using results of the previous chapter. The design is evaluated through

computer simulation.

Chapter 4 presents the sliding mode compensator using depth measurements

only. A model with perturbed hydrodynamic and geometric parameters is used

to estimate the performance of the sliding mode compensator. The chapter ends

with a discussion of the robustness of the sliding mode compensator and advan-

tage of the variable structure control system

Finally, Chapter 5 contains a summary, conclusions, and some directions for

further research.
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II. THEORETICAL BACKGROUND OF SLIDING MODE CONTROL

A. GENERAL

The dynamics of underwater vehicles are described by highly nonlinear, high

order systems with uncertain models and disturbances that are difficult to model.

A new form of sliding mode (Variable Structure System) control has been devel-

oped recently, and shown to apply to a large class of nonlinear systems [Ref. 3].

Sliding mode control offers the control designer new possibilities for improving

the quality of the control in comparison with a fixed structure system. The basic

idea is to design a controller structure which consists of a set of continuous sub-

systems together with suitable switching logic according to [Ref. 1]. The basic

sliding mode control for a SISO system

= Ax+Bu

u = 1 '1x] (2.1)

where, x is the state variable

u is the sliding mode control law

T is a switched feedback gain

A,B are system matrix.

This chapter is devoted to the study of the basic background of the sliding

mode theory for the design of a linear controller for the AUV.

B. LIAPUNOV STABILITY

For a given control system, stability is usually the most important thing to

be determined. If the system is linear and time invariant, then, many stability

criteria are available, such as the Nyquist stability criterion, the Routh's stability
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criterion etc. The second method of Liapunov is the most general method for the

determination of the stability of nonlinear and time varying systems. Before dis-

cussing the sliding mode control, the second method of Liapunov will be dis-

cussed in order to understand the sliding condition, which will be discussed in the

next section. The basic concept of the second method of Liapunov is that if the

system has an asymptotically stable equilibrium state, the stored energy of system

decays with increasing time until it finally assumes it's minimum value. In order

to explain this, Liapunov introduced the so called Liapunov function, an imagi-

nary energy function which depends on the state variable (x,x2 ...x,) and time (t).

If the Liapunov function is denoted by V(x,t) and it's time derivatives denoted

by

dv(x.t) (2.2)
dt

then the Liapunov function has information as to stability, asymptotic stability

or instability of an equilibrium state of the system without solving the state

equation. The theorem of the Liapunov function is described in modern contrC!

engineering [Ret. 4]. If a system is described by

.k = f(x,t) (2.3)

where x is the state variable and if

f(O,t) = 0, for to< t.

and there exists a Liapunov function V(x,t) having continuous '(x,t) and satis-

fying the following conditions:

1. V(x,t) is positive definite, and

2. ['(xt) is negative definite,

4



then the equilibrium state at the origin is asymptotically stable. rP(x,t) is

negative definite which shows that V(x,t) is continually decreasing. So for any

system

=fx'u(t)) (2.4)

where, x is the state variable

u(t) is the control law

x(O,t) =x0

and the time derivative of the Liapunov function P(x,u(t)) is negative definite,

then control law u(t) is guaranteed stable.

C. DYNAMICS OF SYSTEM WITH SWITCHING

Now consider the case that an asymptotically stable system -may consist of

two structures neither of which is asymptotically stable. If the differential

equations of the second order system have the following format:

d'V Ux, (2.5)
d 2

where u is a constant T 1j12

then the structure of the system is elliptic as described in Figure 1 on page 6.

Suppose the system with a positive feedback gain, then structure is aperiodically

unstable as shown in Figure 1. The block diagram of the closed-loop system with

switching gain is illustrated in Figure 2 on page 7. Let us try to combine the

advantage of both systems by suitable choice of their structures in the appropri-

5
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XX2X

xi

(a) (b)

Figure 1. Asymptotically unstable structure [Ref.51

ate parts of the phase plane. In order to get the asymptotically stable structures

in Figure 3 (b), the phase plane was divided into four pairwise subsections as

shown in Figure 3 (a) by the following conditions:

1. Subsection I : x, > 0, x2+'I'x > 0

2. Subsection II : x, <0, x2+ l'x > 0

3. Subsection III : x1  <0, x2+'Ix <0

4. Subsection IV : x,>0, x2+'l'x,:_0

The good phase trajectory for each phase portrait has been chosen to make

asymptotically stable structures ns in Figure 3 (b).

This phase plane- is separated from one another by the straight line x, z-0 and

x 2+'ITx 1 =0 which we call the switch line or sliding surface. The asymptote

6



Input J " ]  Output

Figure 2. The block diagram with switching gain

x2+'l'x =0 acts as a switching line for the structure when the trajectory of the

subsection I is reached. The structure of the system-can be switched by using this

line instantaneously from elliptic to hyperbolic in this case. This switching line is

very important in sliding mode control. Once the system state trajectory ap-

proaches the switching line, and in order to keep the trajectory on the sliding

surface for t > to, then this system wil become asymptotically stable as long as it

satisfies the Liapunov condition. In the general case, a switching line might be a

straight line, a = x2+).x3 (0 < 2 < oo), but must pass through the origin (i e
a(o) =-o).

D. SLIDING CONDITION

Some of the possible advantages offered by the idea of switching the structure

of a control-system were described in- the last subsection. But we remarked- that

if the structure does not change at the precise instance when the trajectory crosses

the switching line, due to the effect, noise, then additional control action will be

7



I

IIl

(a) (b)

Figure 3. Phase plane division -and combined stable structure [Ref.5]

-required to enforce the sliding condition. The motion of the system-now depends

on sliding surface parameters which are insensitiye to the external disturbances

and variations of the plant parameters .ithin a wide range of the switching line.

If the system trajectory of the subsection I crosses into the switching line and af-

ter passing the system trajectory of the subsection II crosses over the switching

line repeatedly again, the system trajectory will be kept within some range of the

switching line. Suppose such change occurs at infinitely high frequency, then the

state of the system trajectory is maintained with an infinitesimal amplitude oscil-

lation. It is an asymptotically stable system on this line as shown in Figure 4 on

page 9.

The motion, of the system -on the switching line is described by the solution

of the general differential equation (2.5) [Ref. 2] together with the equation of the

general switching line given by

8



Figure 4. Switching line aiid'asymptotic trajectory [Ref.5J

C(X) (T - l1 (2.6)

where x xXd, a sing!- element of the state vector

)> 0 ( arbitrary constant)

n- order of system

Thle motion defined by thc equation, (2.6) dcscribcs the. systcmi dynamics in the

sliding mode. A sliding mode has an important propcrty that the corresponding

motion- of the system depends on the siiding surface (Switching Line) which is

chosen bylthe dcsigner only. In order to know the mathematical cxistcncc condi-

9



tion for the siiding mode, the theory of sliding mode has given a considerable at-
tention to the methods guaranteeing the existence of the sliding mode.

1. Condition for Existence of a Sliding Mode
Considering the general dynamic system

dx (2.7)
dt - '(2

Let us assume that the right hand members of this equation are discontinuous
on a certain sliding surface a(x) = 0 in the phase space, where,-as phase trajectory

of the system approaches o(x) = 0 from either side, the following limits are de-

fined [Ref. 5]:

lim fxt) =f-(x,t)

lir fAx,t) =f+(x,t) (2.8)
o.0-

where f(x,t) :f(x,t)

then the derivative of the sliding surface (a) along the trajectories of the system

is

dt - e.a d - ax f = (f.grada) (2.9)
cit "X' d t ex

where f= phase velocity vector, and

lir d- = (fgrada)
0-.0 (it

10



lim - = (I+grada) (2.10)

_0 dt

where o,f is a smooth function.

At each point of a = 0, the sign of the limit equation (2.8) has seven cases. There

is a case which is most interesting as it corresponds to the existence of an ideal

sliding mode on the sliding surface a = 0, if

lim JA- < 0
S0- dt

lim da >0 (2.11)

a-o dt

The equivalent inequality being the condition for existence of a sliding mode is

lim a da 0
-0.o dt

or

~2)

lim <0 (2.12)
a-.0 dt

2. Proof of Stability

This inequality is also suggested by [Ref. 5] as a necessary condition for

the system in equation (2.5) to have a degenerating Liapunov function in the

following form:

V(x) = -[u(x) 2  (2.13)

11



The asymptotic stability of the system (2.5) is guaranteed provided that f/(x) is

negative definite as discussed in the previous section. If O(x,t) is a sliding surface

by the definition above, it follows that

I d (2(.t)< 4)/

2 dt a xt) (x,t) 2,4)

where q is the sliding control gain and

a(x,t) is the sliding surface.

It will guarantee stability of the sliding mode motion. The control law driving

motion in the sliding mode can be obtained by using this condition [Ref. 2]. The

next section will be devoted to a discussion for the development of the sliding

mode control law.

E. SLIDING SURFACE DESIGN

The sliding surface has a very important property that is shown in the previ-

ous section. The sliding sdrface should be designed so that system response.re-

stricted to a(x) has a desired behavior, such as asymptotically stable state or

tracking- error.

Let us consider a linear time invariant system to design the sliding st,'face

k = Ax+Bu (2.15)

where x e R, u = Rm

Consider that the sliding surface of the equation (2.15) has the following form:

a(x) = STx = O (2.16)

where S is the sliding surface coefficient (m x n)

12



The existence of the sliding mode implies that o(x)a(x) < 0 and a(x) = 0 for all

t > to. Using the method of equivalent control [Ref. 6]

6"(x)=0= a dx = STX=o (2.17)
ax dt

Substituting equation (2.15) for k of the above equation

S (Ax+Bueq)= 0

or

ZUeq = _[ST B]- STAx (2.18)

Substituting equation (2.18) -to Eq (2.15) and rearranging

= Ax-B[STB]-ISTAx

or

= [A-B(STB_ STA]x (2.19)

Equation (2.19) gives the dynamics of the system on the sliding surface for t _> to
given a(x) = 0, but the S matrix is unknown. In order to determine S matrix, the
equation (2.19) can be rearranged in the following form:

= [A-BKx

k = Acx (2.20)

where K, = (STB)-ISTA

AC= A-BK,

The K, matrix can be obtained from the pole placement for which we can select

specifically desired closed-loop poles of the system equation (2.20) on the sliding

13



surface. If we get the K, matrix by using the standard pole placement method, the
sliding surface matrix (m x n) can be determined in the following procedure:

K, = (STB)-lSTA

STA-STBK =O

ST(A-BK ) = STAC = 0 (2.21)

It should be noted that A. must be rank deficient by one and that the procedure

must therefore place one pole of A, at the origin. The left eigenvector of the A,
matrix of equation (2.21) corresponding to a pole placed at the origin are the

sliding surface coefficients which give the-desired behavior system on the sliding

surface.

F. SLIDING MODE CONTROL t.AW

Given the dynamic model, the sliding surface definition, and the stability
criteria, a suitable control law can be obtained. We assume that a wide range of

single input, single output dynamic systems, and sliding surfaces 'an be described

by

5=Ax+Bu (2.22)

C(x,t) = Sr.Z(t)

where ST is a row vector of the form [1, s2, s3 .... s._], a specific choice of ST to

achieve a stable tracking error and to enhance robustness as discussed in the
previous section. If 1(t) could be chosen so as to keep the trajectory on

a(x,t) = 0, we would ha%e the sliding control law from the sliding condition

equation (2.14) and sliding surface equation (2.16) that

14



u(x)= ST = -n 2 sign(o)

STA+STBu = -n2 sign(a)

u = -(STB) -lSTAx - -(STB )- l 2sign(a) (2.23)

where qo is a arbitrary nonlinear feedback gain

The control law has two parts.

A-
U = U+U

where U is linear feedback control law

uf is nonlinear feedback control law

Initially, i compensates directly for the known portions of the dynamics. Thus,

W" is discontinuous across the sliding surface. This nonlinear term is obtained di-

rectly from the time-varying bounds on parametric uncertainty and disturbances.

As a result, control discontinuity across o=O grows as the model becomes less

certain and increasingly disturbed. This insures that a2 is a Liapunov function

of the closed-loop system, since it satisfies the sliding condition equation (2.14)

and thus guarantees stability despite the uncertainty in the model and disturb-

ances [Ref. 2]. This type of control law can guarantee stability and perfect

tracking for a large class of nonlinear systems. The discontinuous form results in

a chattering type of control action that would be very undesirable for most sys-

tems and this chattering behavior has been one of the main reasons sliding con-

trol techniques have not been more widely applied. This problem will be solved

by smoothing out the control law in a thin boundary layer around the sliding

surface as given in the next section.
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G. CONSIDERING CHATTERING AND UNCERTAINTY
While sliding mode control provides a control law which is robust to param-

eter variations and disturbance inputs, it was a chattering problem for the input

as shown in Figure 5 on page 17. In fact, imperfections such as delays in
switching and hysteresis in switching, will cause the trajectory to chatter along the

sliding surface. Ali.7ugh as such imperfections vanish, control activity remains
as undesirable switching and high frequency signals on the sliding surface.

The basic idea of eliminating chattering is simple. This chattering problem

caused by a discontinuous and nonlinear switching feedback control law can be

eliminated by replacing it with a continuous feedback control law. But if the

sliding mode control has a continuous feedback function, there are steady state
errors due to variations in parameter and disturbance [Ref. 2]. Suppose the con-

trol law has a continuous feedback, whose terms are continuous function inside
a small boundary layer thickness on the sliding surface, as shown in Figure 6 on
page 18, then the steady state error can be calculated by a smooth function which
eliminates chattering in the boundary layer thickness (0k). This boundary layer

thickness can be determined directly from the desired sliding surface coefficient

limit and estimates of the uncertainty dynamics of the system to be controller. If
the specified bounds on disturbances and parameter uncertainty are not ex-
ceeded, the system is guaranteed to stay within the boundary layer once inside.
If a disturbance temporarily exceeds the specified bounds, the state may go out-

side the boundary layer. However, the sliding condition equation(2.14) implies

that the system will always move back inside the boundary layer once the dis-

turbances return to their projected levels.

The dynamics of the state trajectory inside the boundary are only an ap-
proximation to the desired dynamics on the sliding surface. The advantage of the

scheme is that the state trajectory does not chatter close to the sliding surface.
To carry out the preceding program, we use the sliding surface considered in the

previous section with a(x,t) of the form:

a (X) = (t) (2.24)
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where i(t) = x(O)-xj1 t)

Xj)= desired state variable

To define the boundary layer thickness about the sliding surface of equation

(2.14), define

G'(x = ax+

cr()= *)0(2.25)

where O-is the boundary layer thickness

It is immediately from equation (2.25) that
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Figoure 6. Boundary layer thickness and saturation function

U(x) 1:9 (2.26)

and-

(I. C =Xt C7 (Xt)= d~ (7 +(x,t)- (2.27)
(It (it(i

We choose the control law u(t) as by equation (2.27) for a-(x,t) < 0 or

a-(x,t) > 0. This guarantees that

d -7- (x,t) >O (2.28)

d +

d -a+(x,t) <O (2.29)
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Equation (2.28) and (2.29) establish that trajectories starting outsd,' boundary

layer tend towards boundary layer, and further trajectories starting inside

boundary layer stay in it for t0 < t. It only remains to specify u(x,t) to be a con-

tinuous function of x inside boundary layer thickness.
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111. SLIDING MODE CONTROL FOR NONLINEAR A.U.Y. IN DIVE

PLANE

A. GENERAL

Underwater vehicles present difficult control system design problems due to

their nonlinear dynamics, uncertain hydrodynamic coefficients and the presence

of disturbances that are difficult to measure or estimate. This chapter describes

the dynamics of a selected automonous underwater vehicle (AUY) and the design

of a sliding mode controller which can handle these problems effectively.

Motions of underwater vehicles are expressed in a body fixed reference frame,

because hydrodynamic forces and inertia properties are most readily computed

in a ship reference frame. The nonlinear equations of motion in six degrees of

freedom vehicles which are commonly known as the DTNSRDC 2510 equations

of motion are used for verification of the sliding mode control design. These

highly nonlinear equations of motion are linearized by a Taylor series expansion

and modified to suit the needs of an AUV [Ref. 7]. First, these linearized and

, iodified equations of the system are used to design the sliding surface, sliding

mode control law and observer. These values of the linear system are, then, used

to implement the sliding mode control law for the nonlinear system. This chapter

shows how to design the sliding mode control for the highly nonlinear AUV.

B. NONLINEAR COMPUTER MODEL

The nonlinear wodel used for sliding mode control verification was derived

from the original NSRDC 2510 document [Ref. 8]. The nonlinear model used in

this thesis consists of 8 differential equations which describe the AUV dynamics.

The six equations as, derived from force and moment equalities account for the

states u, v, w, p, q and r. The shape of AUV, which is 17.4 feet long, weighs

12000 pounds, and neutrally buoyant, is depicted in Figure 7 on page 21.
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General dynamical equations are derived from Newton's law in an inertial
reference frame:

{ 1} =fl dynamical response terms) (3.1)

The general form of the force balance is

=dF dT (M5 ) (3.2)

where M = mass matrix

x = [u,, Iw ]T

and the moment balance is

d" (3.3)

where I = moment of inertia matrix

2= [p, q, r

Three dimensional motions of underwater vehicles are normally described using

the body-fixed coordinate and inertial reference frame. Position of the body-fixed
coordinate system is expressed in X, Y, and Z coordinates and orientation of the
vehicle's coordinate system in exprcssed in Euler angles 0, 0, and f. The defi-

nitions of u, v, w, p, q, r and controls are listed in Table I and Table 2.
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Table 1. DEFINITION OF A U V STATES.

STATE DEFINITION UNITS

u surge rate _ _ _ (ft/s)
v sway rate (ftis)
w heave rate (ftis)

p roll rate (rad/s)

q pitch rate (radis)

r yaw rate (rad/s)

4 spin (radians)
0 elevator (radians)

4 azimuth (radians)

Table 2. DEFINITION OF A.U.V CONTROLS

CONTROL DEFINITION

rudder angle
starboard bow plane angle

_ _ _ _ _port bow plane angle

65, stern plane angle
_ _ _ _ delta form

0,, delta buoyancy

The dynamical response terms of the left hand-side of equation (3.1) or

equation (3.2) and (3.3) express the external forces and moments exerted on the

vehicle by hydrodynamic, control surface, propulsion and other effects. The force

and moment equalities of equation (3.2) and (3.3) describe motions in six degrees

of freedom of the AUV. The three forces are in the axial, lateral and normal di-

rections which give rise to motions in surge, sway and heave respectively. The

three- moment equations produce moments and motions in roll, pitch and yaw.

Figure 8 on page 24 shows the positive directions of forces, moments, motions,

and control surface deflections.
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Figure 8. Positive motion directions of the AUV

The equations of motion for the six degrees of freedom for the fully nonlinear

model are listed in the following page. The hydrodynamics coefficient of those

equation used for this thesis are those that were determind using an analytic ap-

proach [Ref. 7] and later simplified [Ref. 9]. The four nonlinear equations that

are considered for designing sliding mode control of the AUV are written in the

,following form:

Normal Equation of Motion

1n[i-uq+vp+\g(pr-4)+ Y (qr+fi)-Zg(p 2+q )] =

24



eI[Z, 4_FZpP2+Z",pr+Zrr2]

+2

p' J'ECDyh(xv)(v+xr)2+CD~b(x)(wixq) 2 d x

+(I'V/-B)-cos 0 cos4

Pitch Equation of Motion

Ij-4+(1x-I 2)pr-I),(pq-)±1 ( p.2)_-i [Xg(0i-uxq+vp)--Z#(z-vr+wq)] =

"' 15f A41 qI'ppP 2 4-A''prpr+M'rrT2]

+ 14[I i'Mqu+M pP+vr]

22



-(XgW-XB) cos 0 cos 0-(ZgW-ZsB) sin 0

+ P 14M qnuxq t(n)+ " 1'(M'wt,uxw+M'6,ynUX6,,) (3.5

Kinematic Relations

0=qcos 4-rsin 0 (3.6)

Z= -ux sin O+v cos 0 sin h+w cos 0 cos 0, (3.7)

The simulations for the dive plane control were performed by using the

FORTRAN language code (Appendix. B) for the simulation of nonlinear system

response as a function of time.

C. LINEAR MODELING

1. Equations of Motion

The sliding mode controller design procedure begins with the expression

of the equations of motion in linear time invariant state space form. The highly

nonlinear AUV-system is

d x(t) = M-ljAx(t), u(t)) (3.8)
dt

y(t) = g(x(t)) (3.9)

where x is the state vector

u is the control input vector

y is the output vector

Although equations (3.8)-can be significantly simplified as in LarsenjRef. 91 they

appear still very complex for this study. The nonlinear equations can be linearized

through a Taylor series expansion in the vicinity of a nominal point (ideally where
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d
dT (t) = 0) for small deviations of u(t) and x(t) from the reference values. These

equations of motion were linearized by Boncal [Ref. 7]. Alternatively, least

squares techniques can be used for parameter identification in order to develop

a linear model for the relationship between dive plane angle (6), pitch rate (q),

depth (z) and pitch angle (0) [Ref. 10]. The linearized and very simplified

equations for the dive plane motion

= -0.7q-0.030-0.0356

O=q

= -UoO (3.10)

were found to provide a satisfactory approximation of the open loop dive plane

dynamics of nonlinear equation (3.4) to (3.7) for the nominal speed of 6 ft/sec (or

500 rpm).

2. Sliding Surface Design

It is evident from the discussion of the sliding mode theory (Chapter 2)

that description of AUV motion depends on the sliding surface regardless of dis-

turbance and unmodel parameters, after it hit sliding surface. So it is very im-

portant to design sliding surface of the AUV with disturbance and unmodelled

parameters. The sliding surface of the AUV will be designed based on the linear

model. The state space form of the linear model is

= Ax+Bu

y = Cx (3.11)

where xT [q. 0, z]

A=[.7 
-0.03201
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"-0.035"

B= 0
0

u=5

and

C=[001]

For a three dimensional system, the sliding surface is the Euclidean plane

C(x) = STx = 0

where S = s2

s-3

Equation (2.6) can be expressed in terms of the state variables and sliding surface

coefficients as following

a(x) = q+s 20+s 3z (3.12)

where the coefficient of q has been normalized to 1. S will determine the sliding

surface plane uniquely. To compute the equivalent control (Uq), we substitute A,

B and S in to equation (3.11), and the closed-loop dynamics of the linear model

are

E=[A-B(STB)-STA]x

or

"=(A-BK)x (3.13)
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where the gain vector K can be found from standard pole placement methods.

The closed-loop dynamics matrix

AC = A-BK (3.14)

where K = (STB)-ISTA

has eigenvalues specified for desirable response of the AUV. One of the

eigenvalues of A, must be specified as zero. With A, specified and K computed

from pole placement, ST matrix can be determined as using the equation (3.13)
and (3.14).

sT(A-BKO=O

or

STAC = 0 (3.15)

Therefore ST is found as a left annihilator of A, or S is a left eigenvector of Ac
which corresponds to the zero value. This sliding surface of the AUV satisfy the

sliding surface condition STx = 0. To find proper sliding surface of the AUV,
Matrix-x program "SCM" in Appendix A is used. The response of the AUV ac-

cording to different sliding surface is shown in Figure 9 on page 30, Figure 10

on page 31, and Figure 11 on page 32. The sliding surface of Figure 10 which

has no overshot and fast response time is selected as the reference sliding surface

of the AUV in order to design control law. The sliding surface of the AUV is

a(x) = q+0.520-0.0112z (3.16)

This sliding surface has the desired dynamics of the closed-loop system. The

perfect depth tracking of the selected AUV is then defined as remaining along the

surface. The dynamic response of AUV is affected by the chosen sliding surface.

The selected sliding surface is used to handle accurate depth control.
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3. Sliding Mode Control Law

Here the goal is to determine switched feedback gains which will drive the

AUV state trajectory to the sliding surface and maintain sliding mode conditions.

By defining the Liapunov function of the equation (2.13)
12

V(x)= -[(a)] 2  (3.17)

where a(x) = q+0.520-0.0112z

asymptotic stability of the AUV on the sliding surface is guaranteed, that pro-

vided V(x) is a negative definite function or

C(x)(x)= U(x) I

or

&(x) = -l 2sign(a (x)) (3.18)

Since o(x)-= Slyt, we have

S T(Ax+Bu) = -2 sign(or(x)) (3.19)

and solving for the-equivalent control input u

u = -(S B) S TAx-(STB)-Il 2 sign(u) (3.20)

It is important to recognize that the feedback control law is composed of two
parts,

A-u-= u+u"

The first t =-(STB)-'SrAx is a linear feedback control law, where the second

U= -- (SrB)-i 2sign(a(x)) is a nonlinear feedback with its sign toggling between

plus and minus according to which side of the sliding plane the AUV is located

in. Two comments are in order here: First, since 7 has to change its sign as the
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AUV crosses a(x) = 0, the sliding surface has to be a hyperplane (dimension of

one less than the state variable). Second, it is i which is mainly responsible for

driving and keeping the AUV onto the sliding plane a(x) = 0 (where i = 0 as
well). The block diagram of the sliding mode control is illustrated in Figure 12

on page 34.

LInear gain

U td(t)

+ + D +sturbane

Nonlinear gain Switching logic

Figtne 12. The block diagram of the sliding mode control

Provided that the gain has -been chosen large enough, W" can provide the

required robustness-due to momentary disturbance and unmodeled AUV without

any compromise in stability. The linear feedback law is designed such that the

AUV has the desired dynamics on the sliding plane. Since u((x) = 0 in this case
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u = =-(STB)-lSTAx (3.21)

Large enough gain (ETA = ,,2(STB)-I =4.0) could be used in the computer simu-

lation by using Matrix-x and FORTRAN program "SMC" in Appendix A. The

dynamic response of the AUV according to several values of gain is shown in

Figure 13 on page 37, Figure 14 on page 38, and Figure 15 on page 39. Choos-

ing properly large enough nonlinear feedback gain, although the response time

of the AUV is fast, the AUV overshoots on the sliding surface as shown in

Figure 15 on page 39. The dive plane angle of the AUV presents chattering due

to sign switching of the nonlinear part of the control law. Several varietic,: of

nonlinear feedback gain (r2) and boundary layer (0) are evaluated through a se-

ries of numerical experiments in order to analysia dynamic response of AUV

which are dependant on it. The characteristic of dynamic response according to

the nonlinear feedback gain, boundary layer, and closed-loop poles are shown in

Table 3.

Table 3. THE DYNAMIC CHARACTERISTIC OF THE AMV ACCORDING
TO DESIGN PARAMETER s

Parameters Depth re- Dive plane Pitch angle Sliding su-
sponse angle (radians) face

C.1 = slow, no no saturated maxi no overshoot
0,t0.1.-0.15 overshoot angle = 0.4

C.P = fast, no over- no saturated maxi no overshoot
0.-0.25.-0.27 shoot angle = 0.41

C.P = fast, over- saturated maxi overshoot
0.-0.45,.0.47 shoot angle = 0.42

ETA = 3, slow, over- no saturated maxi overshoot
PHI =0.2 shoot angle =0.4
ETA =4, fast, no over- no saturated maxi no overshoot
PHI =0.4 shoot angle = 0.41

ETA- 8. fast, no over- saturated maxi overshoot
PHI = 0.4 shoot anglc=0.42
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We already knew that system behavior-is dependent on the sliding surface which

is designed based on closed-loop poles. The closed-loop poles (0,-0.25,-0.27),

nonlinear feedback gain (ETA = 4), and the boundary layer (k = 0.4) are selected

in order to satisfy the necessary motions of the AUV.

36



r 0

o LrI

LJ
'-'0

fL4 C

Lz" Z

Ho U 0 f

9n-

0I l I I I I I

0.0 30.0 60.0 90.0 120 0.0 30.0 60.0 90.0 120
TIME (SEC) TIME (SEC)

O UO

o ""

C-

U

CI I V-'

C)'

U'n -.,. L

0.0 30.0 60.0 900 120 0.0 30.0 60.0 90.0 120

T IME (SEC } T IHE [SEC ]

Figure 13. The dynamic response for ETA(3) and P111(0.2)

37



0

44.

06

0

o CD
IIm

M -3
-0

,'-4o Idl

r,,, Z

0-

C-) M
0.r

In. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

II I I I I
0.0 30.0 60.0 90.0 120 0.0 30.0 60.0 90.0 120

T I M ( SEC) T IME.( SEC )

o --

C_)

-- LO

U)-

Ln -j U *-

Li N%2

Cr)' C

doL

CJ!

I)IIII III I I

0.0 30.0 60.0 90.0 120 0.0 30.0 60.0 90.0 120
TIME(SEC) TIME(SEC)

Figure 14. The dynamic response for ETA(4) and PHI(O.4)

38



LO - a

H5 CE
mL.

9 00

0-

00
C-)

c:

0r

1 1 1 1 1 1 -

0.0 0.0 60.0 90. 1200.0 30.0 60. 90. 12
TIME(S.C) TIE(SEC

oJ Ln

CP
0.0 300 6. 00 2 . 00 00 9. 2

TIE(IC (FMESE

Figue 1. Th dyamicresouseforEnAS n llO4

e39



4. Chattering Problem and Steady State Error

The nonlinear part of the sliding mode control may give rise to chattering
where constant or random disturbances are present, as shown in Figure 16.

9
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CL zM_j

CL

9 
RZ

, 1"-I4 ~

0.0 30.0 60.0 90.0 120 0.0 30.0 60.0 900 120TIMEwSE) TIME(SEC

Figure 16. The chattering problemn of sliding inode control

A choice of a saturation function (satsgn(a)) instead of the pure switch (sign(or))

for the nonlinear control law is prefered inl order to avoid- chatteding prob~lms.

Since the boundary layer thickness is related to the characteristic of dynamic re-

sponse, it can be selected according to the manuvering conditions of underwater

vehicles. Therefore the control law for the AUV is modified to

u = -5.1429q+ 1.07140+K, sats5gn(a)- (3.22)

where K,, =-112 (-STB)--t

and
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+1 if
satsgn(a) -I if Ta<-

if -O,<a<O

This provides a linear interpolation across the boundary layer as illustrated in

Figure 17 on page 42.

A boundary layer thickness (0) essentially assigns a lowpass filter structure-to the

dynamics of the sliding surface (a) . If a specific bound on disturbance is not ex-

ceeded, the system is guaranteed to stay within the boundary layer once inside.

The steady state error of the sliding mode control of the AUV with a disturbance

can be computed as following. From the equation (3.11)

l = -0.7q-0.030-0.035u+d (3.24)

where d is disturbance

4 = q=O

0 = 0 in steady state

The steady state control-input for the-given disturbance is

U = d (3.25)
0.035

The control law in steady state-is

-u IS= isatsgn(- -) (3.26)

where a(x) = -0.01 12e,

e = z-z4
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Figure 17. The saturation function for the nonlinear control law.

u '1'( -0.0112 x e(3.27)

U IS. x
0.0112 

xli

or

= - dx (3.28)0.0112 x 112 x 0.035

The steady state error can be minimized by increasing the nonlinear control gain

(q2) and decreasing boundary layer (0) as shown in Figure 18 on page 44. How-

ever, it can never be completely eliminated. The depth response of the Figure 18

(a) show the steady state error for the constant disturbance (d = 0.005) when us-

ing the nonlinear feedback gain (ETA =4). Large nonlinear feedback gain is used
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in order to decrease the steady state error as shown in Figure 18 (b). The steady

state error for the command depth is decreased down to 10% approximately us-
ing large gain. However, dive plane is kept the same angle regardless nonlinear
feedback gain. If we use large gain and small boundary layer, the depth response

of the AUV may overshoot and the dive plane input may have numerical chat-
tering. This is different from the chattering due to disturbance and unmodeled

dynamics as shown in Figure 19 on page 45. This numerical chattering problem
is an artifact of the numerical integration method (a fixed step Kutta-Merson and

fixed Euler's method were used in the simulation) and, in principle, it can be re-
duced by choosing a more accurate method, with smaller time step.

43



00

9 0D

o

C:) w
'--" CE ' :::

Li cL-H- CL

9-

0 D7

0.0 30.0 60.0 90.0 120 0.0 30.0 60.0 90.0 120

TIME(SEC) TIME(SEC)
(a)

cr- N00 °0

00

"-'-'0

LLi

H. jd

C._ Z

-
9 i9

CZ

-. _______ 0___

I 1

0.0 30.0 60.0 90.0 120 0.0 30.0 60.0 90.0 120

TIME(SEC) TIME(SEC)
(b)

Figure 18. The steady state error for increasing nonlinear feedback gain

44



I

'-'

bLi

CD"

- C -__-

U) 0
0 (N)

C;

LI.

c0 n'-'0

Lii

CD.

E I| I' C II)

r CDo

TI) ;7E ( e ni[tS C

1C" CDvi'44WM

,~4C

TIME(SEC) TIIIE(SEC)

Figure 19. The numerical chattering problem

45



5. Robustness tests

Another important aspect of the sliding mode control is its robustness to
parameter variations and unmodeled dynamics. Sliding mode controllers are ex-

pected to outperform more conventional linear state feedback with respect to

robustness. This is true for the following two reasons: First, choosing n2 suffi-

ciently large will guarantee that the system approaches the sliding surface

asymptotically even for the off-design case. Second, since at the final stage the

system evolves in a lower dimension state space (the sliding surface), it is na-

turally more robust than the original higher dimensionality system. To verify,

these expectations, we changed the hydrodynamic coefficient of the AUV, AUV

rpm and dive plane strength as in Table 4. The standard design AUV equation

are designated by A, B matrices at 6 ft/sec (rpm = 500).

Table 4. ROBUSTNESS TEST CASES

TEST. NO A MATRIX B MATRIX SPEED(RPM)
Nominal test A B 6 ftisec-(500)

Test 1 2 *A B 6 ft/sec (500)

Test 2 A 2*B 6ft/sec (500)
Test 3 A,2 B 6 ft/sec (500)
Test 4 A B,'2 6 ft/sec (500)
Test 5 2"A 2*B 6 ft/sec (500)
Test 6 A;2 B2 6 ft/sec (500)
Test 7 A B 12 ft/sec (1000)

The sliding mode control for the AUV was designed based on the nominal case

as in the previous section. The nominal nonlinear feedback gain (?12 = 2.4) and

boundary layer thickness (40 = 0.4) were applied to the modified system. The dy-

namic response of the modified AUV is shown in Figures 14, and 20, to 26. The

A matrix of test 1 model, which is related to the rotary damping coefficient, was

doubled in magnitude in order to test the sliding mode control. Only the response

time of test 1 model was longer. The test 3 model, which has a matrix equal to
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one-half of the A matrix, presents fast response and overshoot due to decrease in

the the rotary damping moment as shown in Figure 22. The hydrodynamic coef-

ficient for the dive plane, which in proportional to dynamic response time, was

changed in order to test performance of variable structure system for the AUV.

In general, it is -evident from the simulation results, that even under a 200%
change in the coefficient of the A, B and RPM, the vehicle response remains

stable, 7 - 8 % overshoot, faster or slower as expected.
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D. DESIGN OF SLIDING MODE CONTROL FOR THE

NONLINEAR MODEL

The sliding mode appeal is based on its ability to treat nonlinear, time varying

and unmodelled systems in a straightforward manner [Ref. 3]. It is the purpose

of this section to apply the linear sliding mode controller to the nonlinear model

of the actual AUV. The sliding surface and control law gain for the actual AUV

are based on the linearized nominal model. The mathematical form of the non-

linear model for the actual AUV is

&c = Ax+Afx)+B(x)u+d(x, t) (3.29)dt

where B(x) is the nonlinear function associated with the control

surface and actuator system

A(x) is the uncertainty of the nonlinear function f(x).

d(x, t) is the uncertainty disturbance.

The system matrix A is the estimate of f(x) and the magnitude of the uncertainty

is bounded as

F_ I ST A(x) (3.30)

F,

F2

where F '

The individual bounds on any element of Af as estimated from some knowledge

of the extremes of possibility of AJ(x). Also, let B(x) be approximated by B, a

constant, where the varying gain f# is defined by B = flB(x), and fl is taken to be

scalars, but bounded within the limits of fl , < Pl < flm, and f/ommol 1. Then it
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follows that = 1, and Af= 0, and d(x,t) = 0 will yield the nominal sliding mode
control law (3.20). Disturbance d(x,t) is unknown but is upper bounded by a
known continuous function such that:

D >STd(x, t)I (3.31)

The dynamics of the system with bounded uncertainty of the actual AUV is

dx = Ax+Af(x)+#Bu+d(x, t) (3.32)
dt

This equations is used to simulate the uncertain nonlinear terms after the
linearization process. We have designed the sliding surface o(x) = S~x by using
the nominal linearized model in the previous section. Using the sliding condition
theory for the actual AUV, the sliding mode control law for the nonlinear model
can be chosen from equations (3.17) and (3.18) such that if

'x)()= -12 o(x) I

and the system will reach the surface (o(x) = 0) within a finite time t, defined by

t< (0)1 (3.33)
2

The true dynamics of the sliding surface with uncertainty are, however, given by

T

= ST[Ax+Af(x)+flBu+d(x, t)] (3.34)

Substituting equation (3.20) to the above equation for u, then the derivatives of

S= (- f)STAx+STAf(x)+STd(x, t)

-[3 - 11i2sign(G) (3.35)
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From the above, stability is guaranteed, if and only if

&(x) < -1,0sign(a), (3.36)

where q1 is the nonlinear feedback gain without an uncertainty

If the control matrix B is exactly known (1 - I), then control law

ub = -[S TB]-STAx-[S TB]- l2sign(o'(x)) (3.37)

where 712 > I tl+F(x)+D(x, t) I

can guarantee stability and perfect tracking for the nonlinear system with con-

stant control matrix of the AUV. In case where the control system B(x) is un-

certain, the following change (il2) must be made:

u = -[S B]-S TAx-[S B]- l2signcr(x) (3.38)

A

where U = -[SB]-ISTAx

W = -[STB]-1i 2sign(a)

i12 > IJl a I ii+F(x)+D(x, t) I + I (flm -1) II STAx I

Since the nonlinear term of the B(x) and Af(x) is uncertain in most cases, it is

assumed to be zero equation (3.29) and 112 is increased depending on their as-

sumed bonuds to guarantee stable sliding mode control [Ref. 2]. The actual

control law used in subsequent simulation was in fact equation (3.38) with suffi-

ciently large ill to accomodate the uncertainty in Af(x) and B(x); The sliding

mode switching control law equation (3.38) guarantees that equation (3.18) is

satisfied even in the presence of parameter variations and unmodeled dynamics

providcd ill is large enough. The dive plane angle chattering due to modeling er-

rors and disturbances can be eliminated by defining a boundary layer thickness
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about a = 0 as illustrated in the previous subsection. The smooth sliding mode

control law of the actual AUV is then

u = -[STB]- 1 (STAx+q2satsign(--)) (3.39)

where n12 > f nl I rjo+F(x)+D(x, t) I + I (flm.- 1) I I SAx I

The dynamic response, dive plane angle, and sliding surface obtained from non-

linear model simulation at 500 rpm are shown in Figure 27 on page 59. Al-

though the sliding surface and control law gain based on the nominal linear

system were applied to-the nonlinear system, the response of the system is satis-

factory as expected. The designed variable structure system based on the nominal

linear equations dealt with the full nonlinear dynamics of the AUV as shown in

Figure 27. The technique of sliding mode control can handle the nonlinear sys-

tem directly without linearization, if sliding surface coefficients are properly cho-

sen. This is especially important for highly maneuverable underwater vehicles

that can move in all directions.
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E. ROBUSTNESS TESTS USING THE NONLINEAR MODEL

The variable structure systems have an important property which is much less

sensitive to nonlinearities, disturbances, and unmodeled dynamics as illustrated

in the previous chapter. The nonlinear model of the AUV is used to demonstrate

the properties of this control methodology. Accurate models are normally re-

quired in order to achieve good control. However, since hydrodynamic modeling

is a key element in the design of control system for AUV, we have to rely on ap-

proximate expressions for the hydrodynamic forces which can introduce large er-

rors into the-control process. We have already seen the results of simulation for

control performance using an accurate linear model, modified linear model and

accurate nonlinear model. In this section, a simulation study is performed to il-

lustrate the effectiveness of the sliding control under large modifications in the

nonlinear model parameters. The modified hydrodynamic coefficients in Table

4 are closely related to system stability. The rotary damping coefficient (Mq) af-

fects the hydrodynamic moment of the AUV in the vertical plane. The center of

gravitycenter of buoyancy separation is directly proportional to restoring mo-

ment. Hydrodynamic coefficient (11,46) directly affects the pitch moment gener-

ated by the dive planes. Speed was changed from 500 rpm to 1000 rpm.

Table 5. TEST CASES FOR THE NONLINEAR MODEL
TEST NO ill Z rid5, RPM

Test 1 2 *Mq 4Z_ _ Id, 500

Test 2 2" M Z, /2 2"*Md, 500

Test 3 A1q Zg 2 Md, 500

Test 4 Mil ;2 Z/2 Md, /2 500
Test 5 -I' Z 4z,. 4d, [2 500

Test 6 Iq Zg ;4 Mdl 500
Test 7 ,1__7 Z_ _ ."Id, 1000

The controller used was based on the nominal linear model, while some vehicle

coefficients differed by 200%' and nonlinear terms were added. The FORTRAN
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program in Appendix B was used for this purpose. Time plots of depth, pitch

rate, sliding surface, and pitch angle response along with the depth commanded

values are shown from Figure 28 on page 62 to Figure 33 on page 67.

The sliding mode controller is shown to provide stable response and performs

consistently at different parameter values and speed. In every case, the system

remains inside the boundary layer (a = 0). It is felt that the sliding mode method

can produce extremely robust controllers that perform predictably despite the use

of simplified or unmodeled dynamics. The center of gravity of the AUV is the

most sensitive parameter in the vehicle dynamic response. The depth response

of the AUV did not overshoot, although the center of gravity was close to the

center of buoyancy. In general, the rpm affected the dynamic response of the

nonlinear vehicle. In this case, although the rpm was doubled in magnitude, the

overshoot was not present and the response time reduced to 35 seconds. When

variation of parameters and modeling error of the AUV were increased, the

robustness of the sliding control was improved by increasing the nonlinear feed-

back gain @12). Of course, if the uncertain values exceed the limited boundary,

the sliding mode control will not handle these variations effectively. The chosen

nonlinear feedback gain (112 = 2.4) for the selected AUV was enough to handle the

nonlinear terms and the modified hydodynamic coefficients. The modeling er-

rors, variations of parameters, and nonlinear terms, which were difficult problems

of robust using other control technique, were easily dealt with using the sliding

mode control as shown from the results of simulations.
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IV. DESIGN AND EVALUATION OF A F- 'DING MODE
COMPENSATOR

A. GENERAL

An autonomous underwater vehicle (AUV) must operate under its own power

and be capable of navigation and guidance with sufficient accuracy to be easily

recoverable. A navigation system for an underwater vehicle is subject to vehicle

size or cost restrictions and this limits the ability to install the highly accurate

sensors needed to produce reliable pitch rate data. The vehicle depth can be

measured directly by a pressure cell sensor aboard the vehicle. Using the depth

of the vehicle as the only external input, state observers can provide all remaining

controller data. It is desirable to investigate the performance of a sliding mode

compensator designed for a linear model and applicable to a nonlinear model

with unmodeled vehicle dynamics. It is the purpose of this chapter to design

such a sliding mode compensator and assess its robustness. This work involves

numerical simulation of the performance of a sliding mode compensator scheme

using a linear and a ill 12 state nonlinear model of the equation of motion for

the AUV.

B. DESIGN OF SLIDING MODE COMPENSATOR

1. Linear Model

A state observer is designed which uses measured depth only in order to

estimate the vehicle pitch rate and pitch angle. The block diagram of the basic

sliding mode compensator is illustrated in Figure 35 on page 71. The state ob-

server design is based on the equation [Ref. 11].

A 
AX Ax+Bu+K061-C.x) (4,1)

A.where x is the state variable estimated by the observer, and K

is the observer feedback which is required for the observer to be able to follow

and duplicate control system operation.
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A, B, and C are the original open-loop control matrices of

equation (3.11).

u is the sliding mode control law based on the observer.

Note that in the sliding mode compensator, disturbance, nonlinear terms, and

variation of parameters are ignored. Equation (4.1) is schematically depicted in

Appendix A. Collecting terms and rearranging

CA

x = (A-KoC). +Bu+Kcy (4.2)

which is then rearranged into the familiar state space form:

A AA A

x =Ax±Bu

AA A

y=Gx+DU (4.3)
A

where A is the observer A matrix (A-KoC)

B is the observer B matrix
A

C is the observer C matrix

The values for observer feedback gain (K) are calculated using the Matrix-x

program "OBSERVER" in Appendix A. Thisprovids three values of gain for the

one state (depth) that is used by the observer in order to estimate the remaining

two (pitch rate and pitch angle). The poles-chosen for the observer are -4.5, -4.75,

and -4.95. These values are selected because they create a faster response in the

observer than in the controller itself. This condition is necessary to ensure that

the observer will not slow down the overall simulation speed of the controller.

The sliding surface of the sliding mode compensator has the same form as the

sliding surface of a controller (X) = SrJ.

The state obser\ er pro\ides nccessary information to the sliding mode -controller.

The control input of thc sliding mode compensator can be described in the fol-

lowing process. From the sliding condition we have
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&()= -n 2sign(a) (4.4)

Substituting equation (4.3) to equation (4.4) and rearranging

Srx = -,q2Sign(o')
S T(AA+ Bu) = -12sign(a) (4.5)

Finally, the sliding mode control law can be expressed in terms of the estimated

state variables in the following form:

TA I rTA A_U -(S B)- S A T(S B)-1 i 2 sign(a) (4.6)

or

u = U+U

A

where u -~(TB)-ITAx
F, = -(STB)-' l 2sign(a)

The Figure 36 shows the dynamic response of the vehicle with the sliding mode

compensator. The nonlinear feedback gain (il2) in the compeftsator is the same
as the gain in the controller without the observer. It can be seen that since the

observer poles are fast, the performance of the current compensator resemble that

of the controller alone of Chapter 3. A sliding mode compensator is easier to

design and implement than- conventional compensators.
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2. Nonlinear Model

The designed nonlinear control feedback gain (q'), sliding surface (a(x)),

and observer feedback gain (K0), which are based on the nominal linear model,

are used to design a sliding mode compensator in order to handle a full nonlinear

model. Since a nonlinear model can never be as easily predictable as a lin".r

model, there exists certain degree of uncertainty :n the nonlinear terms. A similar

process as in Chapter 3 provides a design of a nonlinear sliding mode

compensator. The AUV nonlinear dynamics is given by

x = Ax+Af(x)+B(x)u (4.7)

where Aj(x), B(x) are the model errors of nonlinear terms and

uncertainty.

Equation (4.7) can be rearranged by using thc. same proceedure in Chapter 3.

.* = Ax+Af(x)+flBu (4.8)

The procedure for obtaining .,() of x(t) is to compute the estimate to be the out-

put of the dynamic system.

.x = Ax+Af(.)+fBu+ K(y-C.) (4.9)

We can rewrite (4.9) in the following state space form

A AA A(A#A+B

y = &A (4.10)

where F( * ) I STf( ) I
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The closed-loop dynamics of the state observer on the sliding surface with un-

certainty is given by

S SE +Af(.)+#!u] (4.11)

Substituting equation (4.6) to the above (4.11) for u, then we obtain the following

equation

=(I _g-)ST A±STAj A)6.= l- 2.~ sA )

-- l '2 signa(X) (4.12)

If " < -?10signa() is enforced, stability will result. We can establish conditions

on the use of il2 in equation (4.6) that will guarantee that sliding condition, given

the bounds of uncertainty. It follows that

I2 >_ T1 A)+(1#)A (4.13)

which can be achieved by

>1 flmax I iF() I + I (max-l) I S (4.14)

These uncertainties in equation (4.10) are eliminated by using equation (4.6) but

with large enough gain (il2) in order to guarantee stability. The boundary layer

used in numerical simulation was selected in order to have the interpretation of

smoothing out the discontinuity in the nominal control law at the switching sur-

face. The nominal control law considered in this section,

S=[SB A B] satsign ) (4.15)

where ?', I : i2+F(.') I + I (fA,- I) I I STAR I
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guarantees asymptotic stability for the nonlinear model which have state observer

as shown in Figure 37. The nonlinear feedback gain (qj2) was chosen according

to the assumed bounding nonlinear terms. The selected gain (q12) in the previous

chapter is large enough to handle any unknown bounded uncertainty. The Fig-

ure 37 depicts the expected robustness of the dynamic response using sliding

mode compensator. This method produces an extremely robust sliding mode

compensator that performs predictably despite the use of the sliding surface, gain

(q/2), control law, and observer feedback gain (K) which are based on the nominal

nlinear model. The FORTRAN program "OBSERVER" in Appendix B has been

written to implement the sliding mode compensator. The results of Figure 37 on

page 77 were obtained by using the standard hydrodynamic coefficients of the

nonlinear model at 500 rpm.
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C. ROBUSTNESS TESTS

1. Linear Model
In the previous numerical analysis we saw that sliding mode compensator could

deal with unknown nonlinear terms by using nonlinear feedback control law i1.

A modified system matrix A, and control matrix B is used to estimate robustness
performance of the sliding mode compensator in this section. The effects of

modeling error in a linear model can be compensated by considering the size of

modeling error as in the classical state space methods [Ref. 11]. The variations

in control matrix B can be handled using a similar method. This technique is easy

to analyze for a single input system. The effects of modeling error can be consid-

ered for any system using sliding mode compensator. Consider the effect of E,

variation in the system matrix A and control matrix B. The system dynamics are

given by

= (A+6A)x+(B+6B)u (4.16)

where 6A is the unknown bounded changing system matrix

6B is the unknown bounded changing control matrix

The unknown changed system matrix (6A) and control (6B) matrix can be ac-

commodated by using a large nonlinear (?12) and boundary layer (0). The large

gain will guarantee stability and the boundary layer obtained in the previous

chapter will eliminate the chattering which is intrinsically linked to the use of a

switching surface. The FORTRAN program "OBSERVER" in Appendx A is
used to estimate unmeasurable state and perform sliding mode compensator to

the modified system. The same boundary layer (4), nonlinear feedback gain (qj2),

control law (4.6), and observer gain(Ko) as in the nominal system are applied to

the modified system to estimate the performance of a sliding mode compensator

designed on a nominal linear model. The system matrix A and control matrix B

are modified as in the following Table 6.
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Table 6. ROBUSTNESS TESTS CASE OF THE SLIDING MODE
COMPENSATOR

Test No System matrix A Control matrix B Speed
Test 1 2*A B 6 ft/sec

Test 2 A,2 B 6 ft/sec

Test 3 A 2*B 6 ft/sec

Test 4 A B/2 6 ftisec

Test 5 2*A 2*B 6 ftisec

Test 6 A,'2 B/2 6 ft/sec

The dynamic response for each test is shown in Figure 38 on page 80 through

Figure 43 on page 85. Although the system matrix A and control matrix B are

modified by 200%, there is only 10 - 11% overshoot to the test 5. The expected.

robustness of the dynamic response is presented by using sliding mode

compensator based on nominal linear model. Sliding mode compensator per-

formance is verified for a linear vehicle with uncertain A and B matrix without

considering additional design.

The sliding mode compensator developed in this section was stable and insensi-

tive to change in hydrodynamic coefficients of the AUV. It therefore appears.that

variable structure systems will provide the most robust design for a sliding mode

compensator that needs to maintain an accurate prediction of vehicle response

under varying conditions.
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2. Nonlinear Model

The siding mode compensator based on the nominal linear model is here applied

to the highly nonlinear vehicle with modified hydrodynamic coefficients in order

to estimate its robustness.

The hydrodynamic coefficients, which affect in the depth change maneuvering,

are modified as Table 5 in the previous chapter. Although an unmodeled dis-

turbance could be made up for using model based compensator, parameter mis-

match was determined to be sensitive to the used method [Ref. 12]. This would

reduce the robustness of the controller when confronted with the varying, un-
controlled condition found in the ocean enviroment. In this section, sliding mode

compensator is used to investigate robustness for control of depth change ma-

neuvering in the face of unmodeled nonlinear terms and parameter uncertainty.

The nonlinear system dynamics for this purpose were described by

.k = Ax+bAx+f(x)+[B+bB+g(x)]u (4.17)

Since 6A, 6B, A~x), and g(x) are unknown values in the present system equation

described above, they are assumed to be zero and qt2 is increased through numer-

ical, simulation in order to guarantee sliding mode control [Ref. 2]. The nominal
control law (4.6) is used to simulate the response of all values (q, u, z, and s) both

actual and estimated. The FORTRAN program "NSMC" was written in order

to simulate numerical experiments provided in Appendix B. Note that in this

section, a soft saturation function might be used to handle the highly nonlinear

model within the boundary layer. The soft saturation function is

SAT= ( )x absa(. ) (4.18)

This saturation function produces soft inputs at approximately zero a(Q) values.

The dynamic response of the highly nonlinear AUV is shown in- Figure 44 on

page 87 through Figure 49 on page 92.
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V. CONCLUSIONS AND RECOMMENDATIONS

A. SUMMARY

This thesis presented an application of variable structure systems for the ro-

bust control of linear and nonlinear systems in the presence of disturbances and

parameter variations. The designed sliding mode compensator based on this

methodology was successfully employed to provide a means for an unmanned

underwater vehicle to control its depth under high nonlinearities. In this section,

we summarize the sliding mode compensator design of the specified AUV:

I. The fully nonlinear equations of motion are linearized and simplified (as il-
lustrated in section 3.C) in order to producc linear equations ii. the state
space form.

2. The sliding surface, which provides desired dynamics of a closed-loop sys-
tem, is designed by the standard pole placement method using the state
space form.

3. The sliding mode control law, which consists of linear feedback and nonlin-
ear switching feedback, can be obtained by satisfying the sliding condition.

4. Chat+-rin- ('ue to piecewise discontinuous feedback is eliminated by replac-
ing witched control lawat the sliding surface by continuous variations
across 'in boundary layer neighboring the switching surface.

5. The nonlinear feedback gain (112) and boundary layer (k) are optimizea by
a series of numerical. experiments.

6. The state observer is designed using classical methods.

7. The sliding mode compensator is designed by combiniihg the sliding mode
control and state observer.

B. CONCLUSIONS

The objective of this work to design and analyze a sliding mode dive plane

compensator for an autonomous underwater vehicle has been achieved. Realistic

limitations due to pitch and pitch rate sensors non-availability were taken into

account. The vehicie that was considered, the SDV is a typical AUV and its

shape and characteristics greatly resemble the NPS vehicle.

The conclusions of this work are summarized below:
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1. A procedure for computing the sliding plane was established. The procedure
is very general and can be applied to a large class of linearized single input
systems. Once the sliding plane coefficients have been determined, the
switching feedback control law follows easily.

2. Chattering problems, characteristic of variable structure system, were re-
duced or eliminated by introducing a "boundary layer" in the switching logic,
without violating the sliding condition.

3. Robustness of the design was demonstrated by a wide variation of parame-
ters of the linear model. Similar robustness characteristics were established
when a full order observer was incorporated in the design in order to provide
estimates for pitch angle and pitch rate based on depth measurements only.

4. The control design that was based on a linear model was tested against the
full nonlinear equations of motion. Numerical simulations demonstrated the
ability of the design to handle unmodelled dynamics and variation of the
hydrodynamic coefficients and geometric parameters of the vehicle.

5. A visual simulation using an IRIS graphics workstation was used [Ref. 13]
in order to view the dynamic behavior of the AUV in real time under
closed-loop sliding mode control. The vehicle response, Figure 50 on page
95, was seen to follow the predictions that were based on the linear model.

6. Finally, an experimental verification was attempt d on the NPS protype ve-
hicle with coefficients the same as the ones used in [Ref. 12 ]. A discrete-
time sliding mode controller was designed based on 25 Hz sample rate with
controller poles at [0.9, 0.91, 1, observer poles at [0.78, 0.79, 0.80], control
law

U = -0.9q- 1.7890-21.2976i 2sign(c)
A

S= -0.3386q1.68880+(Z-Zcom) (5.1)

where 112 = 0.2 and 0 = 1.0

The experimental results are shown in Figure 51 on page 96, where the
commanded depth was 5 volts (1 ft corresponds to 3.1 volts).

The variable structure system was proven to be an attractive control system de-

sign method for autonomous underwater vehicles. The designed sliding mode

compensator based on this methodology dealt with the dynamic problems of the

underwater vehicle with sufficient accuracy.
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Figure 50. Graphic simulation display

C. RECOMMENDATIONS

Some suaggestions for future research are as follows:

1. Design and analyze a nonlinear sliding mode compensator.

2. Evaluate the robustness ch aracteristfics of a digital (discrete ime) Sliding
mode autopilot.

3Extend the developed methodology in the problem of path following
autopilots 'for the multiple input case under constant or random disturbance.
Introduction of integral control action should help in this case to assure
precise path tracking.
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APPENDIX A. SIMULATION PROGRAM AND BLOCKDIAGRAM FOR
LINEAR EQUATION

A. MIATRIX-X(SNMC) OF THE LINEAR EQUATION

***MATRIX PROGRAM FOR SLIDING CONTROLLER**

ux-6-; 1/FORWARD SPEED
CP1-0.25; //CLOSED LOOP POLE
CP2-O.27; /1CLOSED LOOP POLE
s1-1.;/ SLIDING SURFACE COEFFICIENT
S2-(CP1+CP2);/ SLIDING SURFACE COEFFICIENT
S3in(CP1*CP2)/(-UX) 1/SLIDING SURFACE COEFFICIENT
T-10: 0. 1:150.J;
IETA -6.0;
GA3--O.035;
GA4--UX;
GA5---0.7;
GA6---O.03;
GA7-S2;
GA8-S3;
GA9-IETA;
GA1O=1;
GA1m(GA6-S3*UX)/(-GA3);
GA2-(GA5+S2)/(-GA3);
INPUT( : ,1)100*ONES(T);
INPUT( :,2)-0.*ONES(T);
Y-SIM(T,INPUT);
PLOT(T,Y(:,1),'UPPER LEFT XLABEL/TIME(SEC)/ YLABEL/...
DEPTH RESPOSE/TITLE/ DEPTH COMMAND- 100 ,STANDARD AUV/')
PLOT(T,Y(:,2),'UPPER RIGHT XLABEL/TIME(SEC)/ YLABEL/..
PITCH ANGLE/TITLE! CLOSED LOOP POLE-O.0-0.35,-0.40/')
PLOT(-T,Y(:,4),'LOWER LEFT XLABEL/TIME(SEC)/ YLABEL/..
DIVE PLANE ANGLE(radins)/TITLE/ SPEED-6/')
PLOT(T,Y( :,5), 'LOWER RIGHT XLABEL/TIME(SEC)/YLABEL/..
SLIDING SURFACE/TITLE! DIS-O.2, B, NLINEAR,IETA-6.O,PI-O.4/')
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B. FORTRAN(SMC) OF THE LINEAR EQUATION

C
C *LINEAR AUV MODEL
C SLIDING MODE CONTROL PROGRAM *
C * DEPTH CONTROL IN DIVE PLANE *
C * BY USING RUNGE-KUTTA FIFTH ORDER*
-C
C

REAL*8 TIME,QDOT, ZDOT, TDOT,THETA,ZPOS,Q,DS
REAL*8 S, DE, UHAT, UBARPHI,SAT,EITA,COMZ

C *****INITIAL CONDITIONS *****
C

TIME=0. ODO
QO. ODO
THETA=0. ODO
ZPOS=O. ODO

C ********* SLIDING MODE CONTROL PARAMETER *****
EITA=4. ODO
DELT=O. 02D0
COMZ=100. ODO
PHI=O. 4D0

C ****SYSTEM PROGRAM ****
WRITE (8,710)
DO 100 I=0,6000

710 FORMAT (3X,' TIME' 5X,' DEPTH ',6X,t DIVE ',5X,' PITCH
,5X, SLIDE')

C
QDOT=-O. 7D0*Q-O. 03DO*THETA-0. 035D0*DS
TDOT=Q
ZDOT=- 12. ODO*THETA

C
TIME=TIME+DELT
Q=Q+DELT*QDOT
THETA=THETA+DELT*-TDOT
ZPOS=ZPOS+DELT*ZDOT
S=Q+O. 52D0*THETA-O. 0112D0*( ZPOS-COMZ)
IF CABS(S) .LT. PHI) SAT=(S/PHI)
IF (S .LT. -PHI) SAT=-1.ODO
IF (S .GT. PHI) SAT=1.ODO
UHAT=-5. 1429D0*Q+1. O714DO*THETA
UBAR=EITA*SAT
DE=UHAT+UBAR
IF (DE .GE. 0.0D0) DS=0.4D0
IF (DE .LE. -O.4D0) DS=-O.4D0
IF ((E .LT. 0.0D0) .AND. (DE .GT. -O.4D0)) DS=DE
WRITE (8,720) TIME, ZPOS, DS, THETA, S

720 FORMAT (2X,El1.3,4X,E11.3,4X,E11.3,4X,E11.3,4X,El1.3)
100 CONTINUE

STOP
END
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C. NIATRIX-X(O3S EllV ER) OF THE JLINEAR EQUATION

*** SIMULATION PROGRAM FOR SLIDING MODE COMPENSATOR**

UX=6; //FORWARD SPEED
CP1-0.3 //CLOSED LOOP POLE
CP2-0.40; /1CLOSED LOOP POLE
51=1.; /1SLIDING SURFACE COEFFICIENT
S2=(CP1+CP2); //SLIDING SURFACE COEFFICIENT
S3=(CP1*CP2)/(-0.6); //SLIDING SURFACE COEFFICIENT
EITA -6.0;
A=f -0 .7,-0 .03, 0;1,0, 0;0 ,-6,0J;
B=[-0.035;0;01;
C-1I010,11;
N=(C' ,A'*C' ,A'*A'*C' ];
W= (1, 0 .7 ,0.03 ;0, 1 ,0 .7 ;0, 0 ,11;
LA1=5.5; //DESIRE POLE OF OBSERVER
LA2=5.75; //DESIRE POLE OF OBSERVER
LA3=5.9; //DESIRE POLE OF OBSERVER
ABAR=(0.7;0.03;0J;
AHAT-[LA1+LA2iLA3 ;LA1*LA2+LA2*LA3+LA1*LA3;L..L*LA2*LA3];
KC=INV( (N*W)' )*(AHAT-ABAR);
GA1=-1 .4;
GA2=-0 .06;
GA3=-2*UX;
GA4-KC(3,1) ;
GA5=KC(2,1);
GA6=KC(1,1);
GA7=-0.7;
GA8=-0.03;
GA9=-6;
GA1O=-0.035;
GA16=-0 .035;
GA11=0.75;
GA13=-0 .0233;
GA14=(GA2-S3*UX)/(-GA10);
GA12=(GA7+S2)/(-GA1O);
GAl 5 =ElTA;
T=[0:0.1:150. ]' ;
INPUT( :,1)=100*ONES(T);
INPUT( :,2)=0.0*ONES(T);
Y=SIM(T,INPUT);
PLOT(T,[Y(:,1) Y(:,5)],'LINE STYLE 1 2 /UPPER LEFT XLABEL/
TIME(sec) / YLABEL/EST AND ACT DEP'TH'%ft)/')
PLOT(T,(Y(:,2) Y(:,4)],'LINE STYLE 1 2 /UPPER RIGHT XLABEL/
TIME(sec)/ YLABEE1/EST AND ACT ANGLE(rad)/TITLE/ B, 2*A/')
PLOT(T,Y( :,3), 'LOWER LEFT XLABEL/TIME(SEC)/ YLABEL/
DIVE PLANE ANGLE/TITLE! S.F.C=1, 0.75, -0.0233, SPEED=6/')
PLOT(T,Y( :,6), 'LOWER RIGHT XLABEL/TIME(SEC)/YLABEL/
SLIDING SURFACE/ TITLE/ SAT, DIS=O.2, IETA=6,PI=0.4/')
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D. FORTRAN(OI3SERVER) OF THE LINEAR EQUATION
o
C* LINEAR AUV MODEL*
C* SLIDING MODE CONTROL PROGRAM *
C * DEPTH CONTROL IN DIVE PLAN'E *
C *BY USING EULER-METHOD*
C
C

REAL*8 TIME ,QDOT, ZDOT, TDOT,THETA, ZPOS ,Q,DS
REAL*8 S, DE, UHAT, UBAR,PHI,SAT,EITA,COMZ
REAL*8 THADOT, QHADOT,ZHADOT, QHAT ,THAT, ZHAT

C **~**INITIAL CONDITIONS
C

TIME=O. ODO
Q=0. ODO
THETA=0. ODO
ZPOS=O. ODO
QHADOTO0. DO
THADOT=0. ODO
ZHADOTO. ODO
QHAT=O. CDt
THAT=O. ODO
ZHAT=O. ODO

C ***** SLIDINGMODE CONTROL PARAMETER ****~~
EITA=4. ODO
DELT0. 02D0
COMZ=100. ODO
PH=0. 4D0

C ****** SYSTEM PROGRAM ****
WRITE-(8,710)
DO 100 I=0,6000

710 FORMAT (3X:, TIME' ,5X,' DEPTH ',6X,' DIVE ',5X,' PITCH
,5X~t SLIDE')

C
QDOT=-O.35DO*Q-0. O15DO*THETA-O. 0175D0*DS
TDOTO0.5D0*Q
ZDOT=-6. ODQ*THETA

C

TIME=TIME+DELT
Q=Q+DELTV.QDOT
THETA=THETA+DELT*-TDOT
ZPOS=ZPOS+DELT*ZDOT

C ******** SUBROUTINE OBSERVER*****
CALL OBSER(QHADOT,THADOT, ZHADOT,QHAT,THAT, ZHAT, ZPOS ,DELT)

C SLIDING MODE INPUT ****

S=QHAT+0. 52D0*THAT-0.-Ot2L2DO*( ZHAT-COM7,)
IF (ABS(S) .LT. PHI) SAT=(S/PHI)
IF (S .LT. -PHI) SAT=-1. ODO
IF (S .GT. PHI) SAT=1.ODO
UHIAT=-5. 1429D0*QHiAT+1. 07 14D0*THAT
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UBAR=EITA*SAT
DE=UHAT+UBAR
IF (DE .GE. 0.400) DS=O.4D0
IF (DE .LE. -O.4D0) DS=-0.4D0
IF ((DE .LT. 0.0D0) .AND. (DE .GT. -0.4D0)) DS=DE

.4 WRITE (8,720) TIME, ZPOS, DS, THETA, S
720 FORMAT (2X,Ell.3,4X,El1.3,4X,E11.3,4X,E11.3,4X,E11.3)
100 CONTINUE-

STOP
N END

C '' SUBROUTINE OBSER *****
C

SUBROUTINE OBSER(QHADOT,THADOT, ZHADOT,QI{AT,THAT, ZIAT,ZPOS ,DELT)
QHADOT-O-. 7D0*QHAT-O. O3D0*THAT-2O. 92&93D0*( ZPOS-ZHAT)
THADOT-QHAT- 14. 409 2D0*( ZPOS-Z!IAT)
ZHADOT--6. ODO*THAT+16. 45D0*( ZPOS-ZHAT)

QHAT=QHAT+DELT*QHADOT
THAT=TMAT+DELT*THADOT
ZHAT=ZHAT+DELTrZHADOT
RETURN
END
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E. FORTRAN GRAPH
DIMENSION TIME(6000) ,DEPTH(6000) ,DIVE(6000) ,PITCH(6000),

*SLIDE( 6000)
REAL TIME ,DEPTH, DIVE ,PITCH, SLIDE
DO 1 I=1,6000

1 READ (8,*) TIMIE(I),DEPTH(I),DIVE(I),PITCH(I),SLIDE(I)
CALL COMPRS

C ***** CREATES A DUMMY PLOT FOR POST PROCESSING*****
CALL NOBRDR
CALL AREA2D(1.,4.)
CALL GRAF(0. ,1.,20. ,0. ,1.,10)
CALL ENDPL(0)

C ***** PLOT COMMAND DEPTH
CALL PAGE(3. ,4.)
CALL NOBRDR
CALL AREA2D(2. 3,3.0)
CALL XNAME( 'TIME(SEC)$' ,100)
CALL YNAME('COMMAND DEPTH(FT)$' ,100)
CALL THKFRM(0. 03)
CALL GRAF(0. ,30.O,12). ,-5.O0,25. 0,120. 0)
CALL THKCRV(0. 02)
CALL CURVE(TIME,DEPTH,6000,0)
CALL ENDPL(0)

C ***** PLOT DIVE PLANE ANGLE
CALL PAGE(3. ,4.)
CALL NOBRDR
CALL AREA2D(2. 3,3. 0)
CALL XNAME( TIME(SEC)$' ,100)
CALL YNAME('DIVE PLANE ANGLE(RAD)$',100)
CALL THKFRM(0. 03)
CALL GRAF(O.,30.0,120.,-.4,.2,.4)
CALL THKCRV(0. 02)
CALL CURVE(TIME,DIVE,6000,O)
CALL ENDPL(O)

C ***** PLOT PITCH ANGLE
CALL PAGE(3. ,4.)
CALL NOBRDR
CALL AREA2D(2. 3,3. 0)
CALL XNAME( 'TIME(SEC)$ ',100)
CALL YNAME( 'PITCH ANGLE(RAD/SEC)$ ,100)
CALL THKFRM(0. 03)
CALL GRAF(O. ,30.0,120.,-1.O,0.3,0.2)
CALL THKCRV(0. 02)
CALL CURVE(TIME,PITCH,6000 ,0)
CALL ENDPL(0)

C **** PLOT SLIDING SURFACE
CALL PAGE(3. ,4.)
CALL NOBRDR
CALL ARrA2D(2. 3,3.0)
CALL XNAME('TIME(SEC)$',100)
CALL YNAMECSLIDING SURFACE(RAD/SEC)$' ,100)
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CALL THKFRM(0. 03)
CALL GRAF(0. ,30.O,120. ,-0.5,0.5,1.5)
CALL THKCRV(O. 02)
CALL CURVE(TIME,SLIDE,6000,0)
CALL ENDPL(O)

CALL DONEPL
STOP
END
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F. BLOCK DIAGRAM OF THE MIATRIX-X SIMULATION

10



Figure 53. The block diatu of the SM() simulation
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APPENDIX B. SIMULATION PROGRAM FOR NONLINEAR AUV

* NONLINEAR AUV MODEL / STERN PLANE AND BOW PLANE. SEPARATED *
* *

* VARIABLE DECLARATION 11 ** INPUTS ** 248 *
* CONSTANTS 70 PROPULSION MODEL 271 *
* INITIAL CONDITIONS 128 ** OUTPUTS ** 423 *
* MASS MATRIX 206 INTEGRATION *
* INVERT MATRIX 245 *

REAL AW(82,82)
REAL MASS,LATYAWNORPIT
REAL MM(6,6),G4(4),GK4(4),BR(4),HH(4)
REAL B(6,6),BB(6,6)
REAL A(12,12), AA(12,12)
REAL XPP ,XQQ ,XRR ,XPR
REAL XUDOT ,XWQ ,XVP ,XVR
REAL XQDS ,XQDB ,XRDR ,XVV
REAL XI% ,XVDR ,XWDS ,XWDB
REAL XDSDS,XDBDB ,XDRDR ,XQDSN
REAL XWDSN ,XDSDSN
REAL TIME,S,EITA,UBAR,UHAT,COMZ,BAR,SIM,DE,SAT

LATERAL HYDRODYNAMIC COEFFICIENTS

REAL YPDOT ,YRDOT,YPQ ,YQR
REAL YVDOT ,YP ,YR ,YVQ
REAL YWP ,niR ,YV ,YVW
REAL YDR ,CDY

NORMAL HYDRODYNAMIC COEFFICIENTS

REAL ZQDOT ,ZPP,ZPR ,ZRR
REAL ZWDOT ,ZQ ,ZVP ,ZVR
REAL ZW ,ZVV ,ZDS ZDB
REAL ZQN ,ZWN ,ZDSN ,CDZ
REAL ZHADOT,ZHAT

ROLL HYDRODYNAMIC COEFFICIENTS

REAL KPDOT ,KRDOT ,KPQ ,KQR
REAL KVDOT , KP ,KR ,KVQ
REAL KWP , KWR ,KV ,KVW
REAL KPN , KDB

PITCH HYDRODYNAMIC COEFFICIENTS

REAL MQDOT ,MPP ,MPR,MRR
REAL M TDOT , MQ , MVP , MVR
REAL M1 , MVV ,IDS ,MDB
REAL MQN , WN ,MDSN
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REAL QHADOT,QHAT ,THADOT ,THAT

YAW HYDRODYNAMIC COEFFICIENTS

REAL NPDOT,NRDOT,NPQ ,NQR
REAL NVDOT , NP ,NR ,NVQ
REAL NWP , NWR ,NV NVW
REAL NDR

MASS CHARACTERISTICS OF THE FLOODED VEHICLE

REAL WEIGHT , BOY ,VOL ,XG
REAL YG , ZG ,XB ,ZB
-REAL IX , IY ,IZ ,IXZ
REAL IYZ , IXY ,YB
REAL L , RHO ,G NU
REAL AO ,KPROP ,NPROP , X1TEST
REAL DEGRUD ,DEGSTN
COMMON /BLOCK1/ F(12), FP(6), XMMINV(6,6), UCFC4)
INTEGER N,IA,IDGT,IER,LASTJ,K)M)JJ,KK,I
REAL WKAREA(54), X(12)

RUDDER COEFFICIENTS

PARAMETER ( DSMAX= -0.3,75)

LONGITUDINAL HYDRODYNAMIC COEFFICIENTS

PARAMETER(XPP = 7.E-3 ,XQQ = -1.5E-2 ,XRR = 4.E-3 ,XPR =7.5E-4,
& XUDOT=-7.6E-3 ,XWQ = -2.E-" ,XVP = -3.E-3 ,XVR = 2.E-2,
& XQDS=2.5E-2 ,XQDB=-2.6E- ,XRDR= -1.E-3 ,XVV =5.3E-2,
& XWW =1.7E-1 ,XVDR=1.7E-3 ,XWDS=4.6E-2 ,XWDB= 1.E-2,
& XDSDS= -1.E-2 ,XDBDB3= -8.E-3 ,XDRDR= -1.E-2 ,XQDSN= 2.E-3,

-~ ~.XIDSN=3.5E-3 ,XDSDSN= -1.6E-3)

LATERAL HYDRODYNAM1C COEFFICIENTS

PARAMETER(YPDOT=1l.2E-4 ,YRDOT1-.2E-3 ,YPQ = 4.E-3 ,YQR =-6.5E-3,
& YVDOT=-5.5E-2 ,YP = 3.E-3 ,YR = 3.E-2 ,YVQ i2.4E-2,
& YWP =2..3E-1 ,YWR =-1.9E-2 ,YV = -i.E-i ,YVW =6.8E-2,
& YDR =2.7E-2 ,CDY =3. SE-i)

NORMAL HYDRODYNAMIC COEFFICIENTS

PARAMETER(ZQDOT=-6.8E-3 ,ZPP =1.3E-4 ,ZPR =6.7E-3 ,ZRR =-7.4E-3,
& ZWDOT=-2,4E-i ,ZQ =-1.4E-1 ,ZVP =-4.8E-2 ,ZVR =4.5E-2,
& ZW = -3.E-1 ZIIV =-6.8E-2 ,ZDS =-7.3E-2 ,ZDB =-2.6E-2,

& =QN-2.9E-3 ,ZWN =-5.iE-3 ,ZDSN= -i.E-2 ,CDZ = 1.0)

ROLL HYDRODYNAMIC COEFFICIENTS

PAR Alj1ETERn(Ti'PbOT= -1.1L-3 'l\'RDOI=--3.4E-5 ,KPQ =-6.9E-5 ,KQR =1. 7E-2,
& KVDOT=i.3E-4 ,K? =-1.1E-2 ,KR =-8.4E-4 ,KVQ=-5.iE-O^,
& KWP =-1. 3E-4 ,KWR =1. 4E-2 ,KV =3. iE-3 ,KVW =-1. 9E-1,
& KPN =-5.7E-4 ,KDB = 0.0)
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PITCH HYDRODYNAMIC COEFFICIENTS

PARAMETER(MQDOT-1.7E-2 ,MPP =5.3E-5,MPR =5.E-3,MRR =-2.9E-3,
& MWDOT=--6.8E-3 , MQ =-6.8E-2 ,MVP =1.2E-3 ,MVR,=1.7E-2,
& MW = 1.E-1 , MVV =-2.6E-2 ,MDS =-4.1E-2 ,MDB =6.9E-3,
& MQN =-1. 6E-3 , MWN =-2. 9E-3 ,MDSN =-5. 2E-3)

YAW-HYDRODYNAMIC COEFFICIENTS

PARAMETER(NPDOT=--3. 4E-5 ,NRDOT=-3. 4E-3,NPQ =-2. 1E-2 ,NQR =2. 7E-3,
& NVDOT=1.2E-3 , NP =-8.4E-4 ,NR =-1.6E-2 ,NVQ = lE2
& NWP =-1.7E-2 , NWR =7.4E-3 ,NV =-7.4E-3 ,NVW =-2.7E-2,
& NDR =-1.3E-2)

MASS CHARACTERISTICS OF THE FLOODED VEHICLE

PARAMETER( WEIGHT =12000. , BOY =12000. ,VOL =200. ,XG 0.,
& YG =0.0 , ZGO= .2 ,XB =0. ,ZB 0.0 ,
& IX = 1500. , IY = 10000. ,IZ = 10000. ,IXZ =-10.
& IYZ =-10. , IXY =-10. ,YB =0.0,
& L 17.4 , RHO = 1.94 ,G = 32.2 ,NU 8.47E-4
& AO2.0 ,KPROP =0. ,NPROP =0. , X1TESTO .1
& DEGRUD= 0.,0 ,DEGSTN= 0. 0)

INPUT INITIAL CONDITIONS HERE IF REQUIRED

UO = 12.0
VO = 0.0
WO = 0.0
P0 = 0.0
QO = 0.0
RO =0.0
PHIO = 0.0
THETAO = 0. 0
PSIO = 0.0
XPOSO=0. 0
YPOs0=0. 0
ZPOSO=0. 0
DB= 0.0
DS 0. 0
DR 0. 0
RPM =1000.0
LAXYAW = 0. 0
NORPIT = 0. 0
RE =UO*L/NU

U =UO

V =VO

W= wo
P =P0

Q =QO
R =RO

xPOS = xPOS0
YPOs = YPOS0
ZPOs = ZPOS0
PSI = PHIO
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THETA =THETAO
PHI = PHIC
QHADOTO0.0
THADOTO-. 0
ZHADOTO0.0
QHAT=O. 0
THAT=-O. 0
ZHAT-O. 0

DEFINE LENGTH FRACTIONS FOR GAUSS QUADRATURE TERMS

G4(1) = 0.069431844
G4(2) =0.330009478
G4(3) = 0.669990521
G4(4) z.0.930568155

DEFINE WEIGHT FRACTIONS FOR GAUSS QUADRATURE TERMS

GK4(1) = 0.1739274225687
GK4(2) = 0.3260725774312
GK4(3) = 0.3260725774312
GK4(4) = 0. 1739274225687

DEFINE THE BREADTH BB AND HEIGHT HR TERMS FOR THE INTEGRATION

BR(1) = 75. 7/12
BR(2) = 75. 7/12
BR(3) = 75. 7/12
BR(4) = 55. 08/12

HH(1) = 16. 38/12
HH(2) = 31. 85,/12
HH(3) = 31. 85/12
HH(4) = 23. 76/12

MASS =WEIGHT/G

N =6
DO 15 J = 1,N

DO 10 K = 1,N
XMM1NV(J,K) = 0.0

10 CONTINUE

MM( 1,1) = MASS -((RHO/2)*(Llc*3)*XUDOT)
MM(1,5) = MASS*ZG
IM (1,6) = -MASS*YG
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MM(2,2) = MASS -C(RH0/2)*(L**3)*YVDOT)
MM(2 ,4) = -MASS*ZG -( (RHO/2)*(L**4)*YPDOT)
MM(2,6) = MASS*XG - ((RHO/2)*CL**4)*YRDOT)

MM(3,3) = MASS - CCRHO/2)*CL**3)*ZWDOT)
MM(3,4) = MASS*YG
MM(3,5) = -MASS*XG -((RHO/2)*CL**4)*ZQDOT)

MM(4,2) = -MASS*ZG - C(RHO/2)*(L**4)*KVDOT)
MM(4,3) = MASS*YG
M11(4,4) = IX - ((RHO/2)*(L**5)*KPDOT)
MM(4,5) = -IXY
MM(4,6) = -IXZ -(CRHQ/2)*CL**5)*KRDOT)

MM(5,1) = MASS*ZG
MM(5,3) -MASS*XG -((RHO/2)*CL**4)*MWD0T)
MM(5,4) = -IXY
MM(5,5) = IY -((RHQ/2)*(L**5)*MQDOT)
MM(5,6) = -IYZ

MM(6,1) = -MASS*YG
MM(6,2) = MASS*XG -((RFO/?)*(L**4)*NVDOT)
MM(6,4) = -IXZ - ((RK'/D,'. (L**5)*NPDOT)
MM(6,5)-- -IYZ
MM1(6,6) = IZ - ((RH0!2,'*Kfj**5)*NRDOT)

LAST = N*N+3*N
DO 20 M1 = 1,LAST
WKAREA(M) = 0.0

20 CONTINUE

IER =0
IA =6
IDGT = 4
CALL LINV2F(MM,N, IA,XMMINV, IDGT,WKAREA, IER)

INPUTS

RUDDER AND DIVE PLANE COMMANDS

DELT0O. 1
SIM= 800.0
TIME= 0.-0
DS= 0.0
DR= 0.0
DB= 0. 0
RPM=1000. 0
EITA=6. 0
COMZ=100. 0
BAR=0. 4

" SIZE OF OUTPUT DATA ARRAY FOR PLOTTING
c NUMOUT=6
c NUMPNT=4
" WRITE (8,711) NUMPNT,NUMOUT
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WRITE (8,710)
713. FORMAT (214)

DO 100 I=1,SIM
C
C
C
C PROPULSION MODEL
C
C

SIGNU = 1.0
IF (U. LT. 0. 0) SIGNU =-1. 0
IF (ABS(U).LT.X1TEST) U = X1TEST
SIGNN = 1. 0
IF (RPM.LT.0. 0) SIGNN = -1.0
ETA =0. 012*RPM/U
RE =U*L/NU
CDO =.00385 + (1. 296E-17)*(RE - 1.2E7)**2
CT =0. 008*L**2*ETA*ABS(ETA)/(AO)
OT1 0. 008*L,?c2/(A0)
EPS =-1. 0+SIGNN/SIGNU*(SQRT(CT+1. 0)-i. 0)/(SQRT(CT1+1. 0)-i. 0)
XPROP = CDO*(ETA*ABS(ETA) - 1.0)

CALCULATE THE DRAG FOCE INTEGRATE THE DRAG OVER THE VEHICLE
INTEGRATE USING A 4 TERM GAUSS QUADUTURE

LATYAW = 0. 0
NORPIT = 0. 0
DO 500 K =1,4

UCF(K) SQRT((V+G4(K)*R*L)**2 + (W-G4(K)*Q*L)**2)
IF(UCF(K). GT. lE-1O) THEN
TERMO =(RHO/2)*(CDY*HH(K)*(V+G4(K)*R*L)**2 +

& CDZ*BR(K)*(W-G4(K)*Q*L)**2)
TERM1 TERMO*(V+G4(K)*R*L)/UCF(K)
TERM2 = TERM0*(W-G4( K)*Q*L) /UCF( K)
LATYAW = LATYAW + TERtfl*GK4(K)*L
NORPIT = NORPIT + TERM2GK4(K)*L
END IF

500 CONTINUE
C
C FORCE EQUATIONS
C
C
C LONGITUDINAL FORCE
C

FP( 1) =MASS*V*R - MASS*W*Q + MASs*XG*Q*.*2 + MASS*XG*R**2-
& MASS*YG*P*~Q - MASS*ZG*P*R + (RHO/2)*L**4*(XP*P**'~2 +
& XQQ*Q**2 + XRR*R**2 + XPR*P*R) +(RHO/2)*L*3*(XWQ*W*Q +
& XVP*V*P+XVR*V*R+U*Q ( XQDS*DS+XQDB*DB )+XRDR*tJ*R*DR )+
& (RHO/Z)'-Thf*Z2*(XVV***2 + XVW*W*'*2 + XVDR*U*V*DR + U*'W*
& (XWADS*DS+XWTDB*DB )+U**2*( XDSDS,*DS**2+XDBDB*DB**2+
& XDRDR*DR**2) )-(WEIGHT -B0Y)'*SIN(THETA) +(RHO/2)*
& XQDSN*U*Q*DS*EPS+( RHO! 2) *L**2*( XWDSN*U*WDS+XDSDSN*U**2*
& DS*2 ) *EPS +( RHIO!2) *L-*2*U**2.*XPROP



C
LATERAL FORCE

FP(2) -MASS*U*R - MASS*XG*P*Q + MASS*YG*R**2 - MASS*ZG*Q*R +
& (RHO/2)*L*r*4*(YPQ*P*Q + YQR*Q*R)+(RHO/2)*L**3*(YP*U*P +
& YR*U*R + YVQ*V*Q + YWqP*W*P + YWR*W*R) + (RHO/2)*L**2*
& (YV*U*V + YVW*V*W +YDR*U**2*DR) -LATYAW +(WEIGHT-BOY)*
& COS(THETA)*SIN( PHI )+MASS*W*P+MASS*YG*P**2

NORMAL FORC:

FP(3) = IIASS*U*Q - MASS*V*P - MASS*XG*P*R - IASS*YG*Q*R +
& MASS*ZG*P**2 + lASS*ZG*Q**2 + (RHO!2)*L**4*(ZPP*P**2 +
& ZPR*P*~R + ZRR*R**2) + (RHO/2)*L**3*( ZQ*U*Q + ZVF*'V*P +
& ZVR*V*R) +(RHO!2)*L**2*(ZW*U*:W + ZVV*V**2 + U**2*(ZDS*
& DS+ZDB*DB)) -NORPIT+(WEIGHT-BQY)*COS(THETA)*COS(PHI)+
& (RHO 2 )*L**3*ZQN*U*Q*EPS +( RHO 2 )*L**2*( ZWN*U*W +ZDSN*
& U**2*DS)*EPS

ROLL FORCE

FP(4) = -IZ*Q*R +IY*Q*R -IXY*P*R +IYZ*Q**2 -IYZ*R**2 +IXZ*P*Q +
& MASS*YG*U*Q -MASS*YG*V*P -MASS*ZG*W*P+( RHO/ 2)*L* *5*( KPQ*

& P*Q + KQR*Q*R) +(RHO!2)*L**4*(KP*U*P +KR*U*R + KVQ*V*Q +
& P*W*CP + KWR*W*R) +(RHO/2)*L**3*(KV*U*V + KVW*V*W) +
& (YG*WEIGHT - YB*BOY)*COS(THETA)*COS(PHI) - CZG*WEIGHT -

& ZB*BOY)*COS(THETA)*SIN(PHI) + (RHO/2)*L**4*KPN*U*P*EPS+
& (RHO/ 2)*L**3*U**2*KPROP +MASS*ZG*U*R

PITCH FORCE

FP(5) -IX*P*R +IZ*P*R +IXY*Q*R -IYZ*P*Q -IXZ*P**2 +IXZ*~R**2
& MASS*~XG*U*Q + MASS*XG*V*P + MAS5*ZG*V*R H ASS*ZG*W*Q +
& (RHO! 2) *L**5*( MPP*P**2 +MPR*P*R +MRR*R**2 )+( RHO1 2 )*eL*4*
& (IIQ*U*Q + MVP*V*P + MVR*V*R) + (RHO! 2) *L**3*( Ml*UJ*W +
& MVV*V*2+U**2*( MDS*DS+MDB*DB) )+ NORPIT -(CXG*WEI GHT-
& XB*BOY)*COS(THETA)*COS(PHI )+(RHO/2)*L*4*MQN*U*Q*,EPS +
& (RHO! 2)*L*-"*3*( IIN*U*W+IIDSN*U**2*DS )*EPS -
& (ZG*WEIGHT-ZB*BOY)*SIN(THETA)

YAW FORCE

FP(6) = -IY*P*Q +IX*P*Q +IXY*P**2 -IXY*Q**2 +IYZ*P*R -IXZ*Q*R-
& MASS*XG*U*R + MASS*XG*W*P - MASS*YG*V*R + MASS*YG*W*Q +
& (RHO! 2) *L**5*( NPQ*P*Q + NQR*Q*R) +( RHO! 2) *L**4*( NP*U*P+
& NR*U*R + NVQ*V*Q +NWP*W*P + NWR*W*R) +(RHO/2)*Th**3*(NV*
& U*V + NVW*V*W + NDR*U*2*DR) - LATYAW + (XG*WEIGHT-
& XB*BOY)*COS(THETA)*SIN(PHI)+(YG*WEIGHT)*SIN(THETA)
& +( RHO! 2) *L' *3*U**2*'NPROP -YB*BOY*S IN( THETA)

~NOW COMPUTE THE F(1-6) FUNCTIONS

DO 600 J = 1,6
F(J) = 0.0

DO 600 K = 1,6

112



F(J) = XMMINV(J,K)*FP(K) + F(J)

600 CONTINUE

THE LAST SIX EQUATIONS COME FROM THE KINEMATIC RELATIONS

FIRST SET THE DRIFT CURRENT VALUES

UCO = 0. 0
VCO = 0. 0
WCO=O0.0

INERTIAL POSITION RATES F(7-9)

F(7) = UCO + U*COS(PSI)*COS(THETA) + V*CCOS(PSI)*SIN(THETA)*
& SIN(PHI) - SIN(PSI)*COS(PHI)) + W*(COS(PSI)*SIN(THETA)*
& COS(PHI) + SIN(PSI)*SIN(PHI))

F(8) = VCO + U*SIN(PSI)*COS(THETA) + V*(SIN(PSI)*SIN(THETA)*
& SIN(PHI) + COS(PSI)*COS(P{I)) + W*(SIN(PSI)*SIN(THETA)*
& COS(PHI) - COS(PSI)*SINCPHI))

F(9) =WOO - U*SIN(THETA) +V*COSCTHETA)*SIN(PHI) +W*COS(THETA)*
& COS(PHI)

EULER ANGLE RATES F(10-12)

F(10) = P + Q*SIN(PHI)*TAN(THETA) + R*COS(PHI)*TAN(THETA)

F(11) = Q*COS(PHI) - R*SIN(PHI)

F(12) = Q*SIN(PHI)/COS(THETA) + R*COS(PHI)/COS(THETA)

UDOT = F~l)
VDOT =F(2)
WDOT =F(3)
PDOT =F(4)
QDOT = F(5)
RDOT =F(6)
XDOT = FM7
YDOT = F(8)
ZDOT = F(9)
PHIDOT = F(10)
THETAD = F(11)
PSIDOT = F(12)

CCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C CREATE OUTPUT DATA FILL
C
C TESTER=MOD(FLOAT(I),100.)
C IF (TESTER .EQ. 0.0) THEN

TIMER=FLOAT( 1)/2.
C WRITE (8,730) DS,DR,XPOS,YPOS,ZPO-S,ROLL,PITCH,YAWT
C WRITE (8,730) FP(5)
C WRITE (8,730) U,V,W,P,Q,R
C WRITE (8,730) IX,IZ,IXY,IYZ,IXZ
C WRITE (8,730) MASS,XG,ZG



C WRITE (8,730) RHO,L,MPP,MPR,MRR
C WRITE (8,730) MQ,MVP,MVR,MW
C WRITE (8,730) IVV,MDS,DS,MIDB,DB,NORPIT,WEIGHT
C WRITE (8,730) XB,BOY,THETA,PHI,MQN,EPS
C WRITE (8,73 0) MWN,MDSN,ZB
C WRITE (8,730) TIME,DEPTH,DS,THETA,S
C20 FORMAT (1X(,'TIME',3X I'COMMAND DEPTH' 13X,'DIVE P ANG',
C *3X,'PITCH ANGLE' ,3X, SLIDING SURFACE /)
C30 FORMAT (1X,F6.2 2X,E1.,3 3X,E11.3,4X,E1O.3,3X Ell.3)
710 FORMAT (11(,' T IME',3X,I U 1,3X,1 ETA',3X, XPROP',

*3X, 'DS')
WRITE (8,730) TIME,U,ETA,XPROP,DS

730 FORMAT (lX,F6.2,2X,F6.2,2X,F6.3,2X,F8.4,2X,E11.3)
C ENDIF
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C FIRST ORDER INTEGRATION
C

U = U + DELT*UDOT
C U = SURGE RATE

V = V + DELT*VDOT
C V =SWAY RATE

W =W + DELT*WDOT
c W =HEAVE RATE

P = P + DELT*cPDOT
C P =ROLL-RATE

Q = Q + DELT*QDOT
C Q = PITCH RATE

R = R + DELT'cRDOT
C R = YAW RATE

XPOS = XPOS + DELT*%XDOT
C X = SURGE

YPOS = YPOS + DELT*YDOT
C Y = SWAY

ZPOS = ZPOS + DELT*ZDOT
C Z = HEAVE

PHI = PHI + DELIPHIDOT
C PHI = ROLL

THETA = THETA + DELT*THETAD
C THETA = PITCH

PSI = PSI + DELT*PSIDOT
C PSI = YAW

C
C OBSERVER OF SLIDING CONTROLLER

CALL OBSER(QHADOT,THADOT, ZHADOT,QHAT,THAT, ZHAT,DELT, ZPOS ,DS,UO)
C
C
C ******SLIDING MODE CONTROL INPUT

S=QHAT+O. 75'ITIAT-O. 0233*( ZHAT-COMZ)
IF CABS(S) .LT. BAR) SAT-(S/BAR)*ABS(S)
IF (S .LE. -BAR) SAT=-1
IF (S . GE. 'BAR) SAT- i
UHAT:=1. 4286*QHAT+3. 1429*THAT
UBAR=E ITA'*SAT
DE=UHAT+UBAR
IF (DE .GE. 0.4) DS=0.4
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IF (DE .LT. -0.4) DS=-O.4
IF( (DE .LT. 0.4) .AND. (DE .GE. -0.4) )DS=DE
DB=-DS*1.-0
TIME=TIME+DELT

PHIANG = PHI/0. 0174532925
THEANG = THETA/0. 0174532925
PSIANG = PSI/0. 0174532925

C
TRAC=-YPOS
ROLL,=PHIANG
YAW=PSIANG
DEPTH=-ZPOS
DEPTH=ZPOS
PITCH=THEANG
BOWANG=(DB/. 01745)
STNANG=(DS/. 01745)

100 CONTINUE
STOP
END

C ******** OBSERVER SUBROUTINE ***
SUBROUTINE OBSER(QHADOT,THADOT, ZtADOT,QHAT,THAT, ZHAT,DELT,

*ZPOS,DS ,U)

QHADOT=-O. 7*QHAT-0. 03*THAT-0. O35*DS-2O. 9293*(ZPOS-ZHAT)
THADOT=QHAT- 14. 409 2*r(ZPOS -ZHAT)
ZHADOT=-6*THAT+16. 45*( ZPOS-ZHAT)

C
QHAT=QHAT+DELT*QHADOT
THAT=-THAT+DELT*THADOT
ZHAT=ZHAT+DELT*ZHADOT
RETURN
END
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